University of California, Santa Cruz Board of Studies in Computer Engineering

CMPE-242: APPLIED FEEDBACK CONTROL

FALL 2010 SYLLABUS

FPE: Franklin, Powell, Emami - Feedback Control of Dynamic Systems, 6th FPW: Franklin, Powell, Workman - Digital Control of Dynamic Systems, 3rd

SHAUM'S: STUBBERUD, WILLIAMS, DISTEFANO - SCHAUM'S OUTLINE OF FEEDBACK AND CONTROL SYSTEMS

WEEK	Dates	TOPIC	ASSIGNMENTS
0	23-SEP	Course Mechanics, Syllabus, LCCDE, Free and Forced Dynamic Response, Laplace Transform, Convolution	Read FPE Ch. 1-3, Appendix A. <u>Homework #1 out</u>
1	28/30-Sep	Transfer Function, Impulse Response, Partial Fractions, Residues, FVT, Evan's Form, Root Locus vs. Bode, Stability, Control Design Spec's, Transient Spec's, Tracking Spec's, Robustness Spec's, Evan's Form, Root Locus	Read FPE Ch. 4 & 5, Review RL techniques from Schaum's and CMPE-241 notes. Homework #2 out Homework #1 due 30-Sep
2	5/7-Ост	Root Locus review, Analysis vs. Synthesis, Lead and Lag compensators, Pole Zero Cancellations, PID Control, Bode	Read FPE Ch. 6, Review Bode techniques from Schaum's and CMPE-241 notes. Homework #3 out Homework #2 due 7-Oct
3	12/14-Ост	Bode Plots, Non-minimum phase systems, Frequency Domain Specs, Bode design examples	Re-read FPE Ch. 6 (not kidding), Schaum's and CMPE-241 notes on Nyquist. Homework #4 out Homework #3 due 14-Oct
4	19/21-Ост	Bode Plots, Non-minimum phase systems, Frequency Domain Specs, Bode design examples	Read FPE Ch. 8 and FPW Ch. ?. Homework #5 out Homework #4 due 21-Oct
5	26/28-Ост	Performance vs. Robustness tradeoffs, Nyquist, Phase and Gain Margins, Introduction to Digital Control, Sample and Hold, CCO∆E, ZOH, half-sample time delay, numerical differentiation, Padé Approximation, numerical integration	Re-Read FPE Ch. 8 and FPW Ch. ?. Homework #6 out Homework #5 due 28-Oct
6	2/4-Nov	Z-transform, Euler Integration, Backward Euler, Trapezoidal Integration, Discrete Equivalent, z-plane, Aliasing, Unit Pulse Response, z-domain stability, Unit Circle, z-grid, digital control design, ZOH-equivalent, z-plane design, Inverse Z-transform, FVT, DC gain	Re-read FPE Ch. 8 (so not kidding) and FPW Ch. ?. Homework #7 out Homework #6 due 4-Nov

7	9-Nov	Anti-Aliasing Filters, Continuous to	Read FPE Ch. 7, and FPW Ch. ?.
	*	Discrete Equivalent (ZOH), Direct Digital	Homework #7(a) due 9-Nov
		design, Pade approximations	
8	16/18-Nov	Bode and Nyquist in z-plane, Tustin, Pre-	Re-read Ch. 7, review notes on
	*	warping, Introduction to State Space,	State Space from CMPE-240.
		State Space to Transfer Function,	Homework #8 out
		Eigenvalues, Characteristic Equation,	Homework #7(b) due 16-Nov
		Controller Canonical Form	MIDTERM IN CLASS 18-NOV
9	23-Nov	Similarity Transforms, Uniqueness of	Re-read Ch. 7 (really, not
	*	State, Pole Placement, Ackerman's	kidding)
		Formula, Controllability Matrix	Homework #9 out
			Homework #8 due 23-Nov
10	30-Nov-2-Dec	Controllability condition number	Re-read FPE Ch. 1-8, Review
		equivalent to pole zero cancellation,	for Final Exam.
		Regulator, Estimator, Observability,	Homework #9 due 2-Dec
		Separation Principle, LQR, LQE, LQG	
		control.	
11	7/9-DEC	Optimal Control, Bryson's Rule, LQY,	Final Review
		Symmetric Root locus, Kalman Filter,	
		BLUE, Integral Control (State	
		Augmentation), Tracking commands,	
		Digital State Space, Deadbeat Controller,	
		Reduced Order Estimator, Pincher	
		Control, Implicit Model Following	
FINAL	8-Dec	Covers everything in the class	Location TBD @ 12:00 – 3PM

^{*}Note: this syllabus is tentative, and subject to revisions. Due to the way that Veteran's Day lines up, with Thanksgiving and the Midterm, there are three less lectures than normal in the quarter. As such, there will be some make-up or supplementary lectures during the quarter, and depending on student availability, the midterm might be scheduled outside of normal class hours.