

EE-154/CMPE-241 Winter 2007 Due: 6PM, 06-Mar-2007

Homework #8: Bode Synthesis.

- 1. Read Chapter #6 in FPE (again).
- 2. Sketch the Bode diagrams (frequency response plots) for  $G(s) = \frac{s-1}{s^2 64}$ .
- 3. Sketch the Nyquist plots for each of these systems. For what range of gain, *K*, will the system be stable?

a. 
$$G(s) = K \frac{s+100}{s^2(s+10)}$$

b. 
$$G(s) = K \frac{s+1}{s^2(s+10)}$$
.

4. What is the phase margin for the system:  $G(s) = \frac{10(s+0.5)}{s^2(s+2)(s+10)}$ ? Do this by hand, and then check with MATLAB.

- 5. Consider the system:  $G(s) = \frac{10}{(s+0.1)(s^2+s+100)}$ .
  - a. Design a compensator, K(s) to meet the following specifications:
    - 1. Closed Loop Bandwidth,  $\omega_{BW} \approx 1$  rad/sec.
    - 2. Phase margin  $\geq$  30 degrees.
    - 3. Gain margin  $\geq 10$ .
    - 4. Steady-state error due to a unit step input  $\leq 0.01$ .
  - b. Plot a root locus of your system (and compensator) vs. the loop gain.
- 6. Draw enough Bode Plots and Nyquist Diagrams to make sure you can do it on the final exam! You can check your work with MATLAB (nothing to turn in).