UNIVERSITY OF CALIFORNIA, SANTA CRUZ Board of Studies in Computer Engineering

CMPE 240: INTRODUCTION TO LINEAR DYNAMICAL SYSTEMS

Gabriel Hugh Elkaim

Basic Notation

Basic set notation

$\left\{a_{1}, \ldots, a_{r}\right\}$	the set with elements a_{1}, \ldots, a_{r}.
$a \in S$	a is in the set S.
$S=T$	the sets S and T are equal, i.e., every element of S is in T and
$S \subseteq T$	every element of T is in S.
	the set S is a subset of the set T, i.e., every element of S is also
$\exists a \in S \mathcal{P}(a)$	an element of T.
$\forall x \in S \mathcal{P}(a)$	there exists an a in S for which the property \mathcal{P} holds.
$\{a \in S \mid \mathcal{P}(a)\}$	the set of hollds for every element in S.
	omitted if it can be der which \mathcal{P} holds (the set S is sometimes
$A \cup B$	union of sets, $A \cup B=\{x \mid x \in A$ or context.) $x \in B\}$.
$A \cap B$	intersection of sets, $A \cap B=\{x \mid x \in A$ and $x \in B\}$
$A \times B$	Cartesian product of two sets, $A \times B=\{(a, b) \mid a \in A, b \in B\}$

Some specific sets

R	the set of real numbers.
\mathbf{R}^{n}	the set of real n-vectors ($n \times 1$ matrices) .
$\mathbf{R}^{1 \times n}$	the set of real n-row-vectors ($1 \times n$ matrices).
$\mathbf{R}^{m \times n}$	the set of real $m \times n$ matrices.
\jmath	can mean $\sqrt{-1}$, in the company of electrical engineers.
i	can mean $\sqrt{-1}$, for normal people; i is the polite term in mixed company (i.e., when non-electrical engineers are present.)
$\mathbf{C}, \mathbf{C}^{n}, \mathbf{C}^{m \times n}$	the set of complex numbers, complex n-vectors, complex $m \times n$ matrices.
Z	the set of integers: $\mathbf{Z}=\{\ldots,-1,0,1, \ldots\}$.
\mathbf{R}_{+}	the nonnegative real numbers, i.e., $\mathbf{R}_{+}=\{x \in \mathbf{R} \mid x \geq 0\}$.
$[a, b],(a, b],[a, b),(a, b)$	the real intervals $\{x \mid a \leq x \leq b\},\{x \mid a<x \leq b\}$, $\{x \mid a \leq x<b\}$, and $\{x \mid a<x<b\}$, respectively.

Vectors and matrices

We use square brackets [and] to construct matrices and vectors, with white space delineating the entries in a row, and a new line indicating a new row. For example [12] is a row vector in $\mathbf{R}^{2 \times 1}$, and $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$ is matrix in $\mathbf{R}^{2 \times 3} \cdot\left[\begin{array}{ll}1 & 2\end{array}\right]^{T}$ denotes a column vector, i.e., an element of $\mathbf{R}^{2 \times 1}$, which we abbreviate as \mathbf{R}^{2}.

We use curved brackets (and) surrounding lists of entries, delineated by commas, as an alternative method to construct (column) vectors. Thus, we have three ways to denote a column vector:

$$
(1,2)=\left[\begin{array}{ll}
1 & 2
\end{array}\right]^{T}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Note that in our notation scheme (which is fairly standard), $[1,2,3]$ and (12 3) aren't used.

Functions

The notation $f: A \rightarrow B$ means that f is a function on the set A into the set B. The notation $b=f(a)$ means b is the value of the function f at the point a, where $a \in A$ and $b \in B$. The set A is called the domain of the function f; it can thought of as the set of legal parameter values that can be passed to the function f. The set B is called the codomain (or sometimes range) of the function f; it can thought of as a set that contains all possible returned values of the function f.

There are several ways to think of a function. The formal definition is that f is a subset of $A \times B$, with the property that for every $a \in A$, there is exactly one $b \in B$ such that $(a, b) \in f$. We denote this as $b=f(a)$.

Perhaps a better way to think of a function is as a black box or (software) function or subroutine. The domain is the set of all legal values (or data types or structures) that can be passed to f. The codomain of f gives the data type or data structure of the values returned by f.

Thus $f(a)$ is meaningless if $a \notin A$. If $a \in A$, then $b=f(a)$ is an element of B. Also note that the function is denoted f; it is wrong to say 'the function $f(a)$ ' (since $f(a)$ is an element of B, not a function). Having said that, we do sometimes use sloppy notation such as 'the function $f(t)=t^{3}$ '. To say this more clearly you could say 'the function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(t)=t^{3}$ for $t \in \mathbf{R}^{\prime}$.

Examples

- $-0.1 \in \mathbf{R}, \sqrt{2} \in \mathbf{R}_{+}, 1-2 j \in \mathbf{C}$ (with $j=\sqrt{-1}$).
- The matrix

$$
A=\left[\begin{array}{rrr}
0.3 & 6.1 & -0.12 \\
7.2 & 0 & 0.01
\end{array}\right]
$$

is an element in $\mathbf{R}^{2 \times 3}$. We can define a function $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ as $f(x)=A x$ for any $x \in \mathbf{R}^{3}$. If $x \in \mathbf{R}^{3}$, then $f(x)$ is a particular vector in \mathbf{R}^{2}. We can say the function f is linear'. To say 'the function $f(x)$ is linear' is technically wrong since $f(x)$ is a vector, not a function. Similarly we can't say ' A is linear'; it is just a matrix.

- We can define a function $f:\{a \in \mathbf{R} \mid a \neq 0\} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ by $f(a, x)=(1 / a) x$, for any $a \in \mathbf{R}, a \neq 0$, and any $x \in \mathbf{R}^{n}$. The function f could be informally described as division of a vector by a nonzero scalar.
- Consider the set $A=\{0,-1,3.2\}$. The elements of A are $0,-1$ and 3.2. Therefore, for example, $-1 \in A$ and $\{0,3.2\} \subseteq A$. Also, we can say that $\forall x \in A,-1 \leq x \leq 4$ or $\exists x \in A, x>3$.
- Suppose $A=\{1,-1\}$. Another representation for A is $A=\left\{x \in \mathbf{R} \mid x^{2}=1\right\}$.
- Suppose $A=\{1,-2,0\}$ and $B=\{3,-2\}$. Then

$$
A \cup B=\{1,-2,0,3\}, \quad A \cap B=\{-2\} .
$$

- Suppose $A=\{1,-2,0\}$ and $B=\{1,3\}$. Then

$$
A \times B=\{(1,1),(1,3),(-2,1),(-2,3),(0,1),(0,3)\}
$$

- $f: \mathbf{R} \rightarrow \mathbf{R}$ with $f(x)=x^{2}-x$ defines a function from \mathbf{R} to \mathbf{R} while $u: \mathbf{R}_{+} \rightarrow \mathbf{R}^{2}$ with

$$
u(t)=\left[\begin{array}{c}
t \cos t \\
2 e^{-t}
\end{array}\right]
$$

defines a function from \mathbf{R}_{+}to \mathbf{R}^{2}.

