UNIVERSITY OF CALIFORNIA, SANTA CRUZ BOARD OF STUDIES IN COMPUTER ENGINEERING

CMPE 240: INTRODUCTION TO LINEAR DYNAMICAL SYSTEMS

GABRIEL HUGH ELKAIM

WINTER 2016

Basic Notation

Basic set notation

$\{a_1,\ldots,a_r\}$	the set with elements a_1, \ldots, a_r .
$a \in S$	a is in the set S .
S = T	the sets S and T are equal, <i>i.e.</i> , every element of S is in T and every element of T is in S .
$S \subseteq T$	the set S is a subset of the set T , <i>i.e.</i> , every element of S is also an element of T .
$\exists a \in S \ \mathcal{P}(a)$	there exists an a in S for which the property \mathcal{P} holds.
$\forall x \in S \ \mathcal{P}(a)$	property \mathcal{P} holds for every element in S .
$\{ a \in S \mid \mathcal{P}(a) \}$	the set of all a in S for which \mathcal{P} holds (the set S is sometimes
	omitted if it can be determined from context.)
$A \cup B$	union of sets, $A \cup B = \{ x \mid x \in A \text{ or } x \in B \}.$
$A \cap B$	intersection of sets, $A \cap B = \{ x \mid x \in A \text{ and } x \in B \}$
$A \times B$	Cartesian product of two sets, $A \times B = \{ (a, b) \mid a \in A, b \in B \}$

Some specific sets

\mathbf{R}	the set of real numbers.
\mathbf{R}^n	the set of real <i>n</i> -vectors $(n \times 1 \text{ matrices})$.
$\mathbf{R}^{1 imes n}$	the set of real <i>n</i> -row-vectors $(1 \times n \text{ matrices})$.
$\mathbf{R}^{m imes n}$	the set of real $m \times n$ matrices.
j	can mean $\sqrt{-1}$, in the company of electrical engineers.
i	can mean $\sqrt{-1}$, for normal people; <i>i</i> is the polite term in mixed
	company $(i.e., when non-electrical engineers are present.)$
$\mathbf{C},\mathbf{C}^n,\mathbf{C}^{m imes n}$	the set of complex numbers, complex <i>n</i> -vectors, complex $m \times n$
	matrices.
\mathbf{Z}	the set of integers: $\mathbf{Z} = \{, -1, 0, 1,\}.$
\mathbf{R}_+	the nonnegative real numbers, <i>i.e.</i> , $\mathbf{R}_{+} = \{ x \in \mathbf{R} \mid x \ge 0 \}.$
[a,b], (a,b], [a,b), (a,b)	the real intervals { $x \mid a \leq x \leq b$ }, { $x \mid a < x \leq b$ },
	$\{ x \mid a \leq x < b \}$, and $\{ x \mid a < x < b \}$, respectively.

Vectors and matrices

We use square brackets [and] to construct matrices and vectors, with white space delineating the entries in a row, and a new line indicating a new row. For example [1 2] is a row vector in $\mathbf{R}^{2\times 1}$, and $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ is matrix in $\mathbf{R}^{2\times 3}$. [1 2]^T denotes a column vector, *i.e.*, an element of $\mathbf{R}^{2\times 1}$, which we abbreviate as \mathbf{R}^2 .

We use curved brackets (and) surrounding lists of entries, delineated by commas, as an alternative method to construct (column) vectors. Thus, we have three ways to denote a column vector:

$$(1,2) = \begin{bmatrix} 1 & 2 \end{bmatrix}^T = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

Note that in our notation scheme (which is fairly standard), [1, 2, 3] and $(1 \ 2 \ 3)$ aren't used.

Functions

The notation $f : A \to B$ means that f is a function on the set A into the set B. The notation b = f(a) means b is the value of the function f at the point a, where $a \in A$ and $b \in B$. The set A is called the *domain* of the function f; it can thought of as the set of legal parameter values that can be passed to the function f. The set B is called the *codomain* (or sometimes range) of the function f; it can thought of as a set that contains all possible returned values of the function f.

There are several ways to think of a function. The formal definition is that f is a subset of $A \times B$, with the property that for every $a \in A$, there is exactly one $b \in B$ such that $(a, b) \in f$. We denote this as b = f(a).

Perhaps a better way to think of a function is as a *black box* or (software) *function* or *subroutine*. The domain is the set of all legal values (or data types or structures) that can be passed to f. The codomain of f gives the data type or data structure of the values returned by f.

Thus f(a) is meaningless if $a \notin A$. If $a \in A$, then b = f(a) is an element of B. Also note that the function is denoted f; it is wrong to say 'the function f(a)' (since f(a) is an element of B, not a function). Having said that, we do sometimes use sloppy notation such as 'the function $f(t) = t^3$ '. To say this more clearly you could say 'the function $f : \mathbf{R} \to \mathbf{R}$ defined by $f(t) = t^3$ for $t \in \mathbf{R}'$.

Examples

- $-0.1 \in \mathbf{R}, \sqrt{2} \in \mathbf{R}_+, 1-2j \in \mathbf{C} \text{ (with } j = \sqrt{-1} \text{)}.$
- The matrix

 $A = \left[\begin{array}{rrr} 0.3 & 6.1 & -0.12 \\ 7.2 & 0 & 0.01 \end{array} \right]$

is an element in $\mathbf{R}^{2\times 3}$. We can define a function $f : \mathbf{R}^3 \to \mathbf{R}^2$ as f(x) = Ax for any $x \in \mathbf{R}^3$. If $x \in \mathbf{R}^3$, then f(x) is a particular vector in \mathbf{R}^2 . We can say 'the function f is linear'. To say 'the function f(x) is linear' is technically wrong since f(x) is a vector, not a function. Similarly we can't say 'A is linear'; it is just a matrix.

- We can define a function $f : \{a \in \mathbf{R} \mid a \neq 0\} \times \mathbf{R}^n \to \mathbf{R}^n$ by f(a, x) = (1/a)x, for any $a \in \mathbf{R}, a \neq 0$, and any $x \in \mathbf{R}^n$. The function f could be informally described as division of a vector by a nonzero scalar.
- Consider the set $A = \{0, -1, 3.2\}$. The elements of A are 0, -1 and 3.2. Therefore, for example, $-1 \in A$ and $\{0, 3.2\} \subseteq A$. Also, we can say that $\forall x \in A, -1 \leq x \leq 4$ or $\exists x \in A, x > 3$.
- Suppose $A = \{ 1, -1 \}$. Another representation for A is $A = \{ x \in \mathbb{R} \mid x^2 = 1 \}$.
- Suppose $A = \{ 1, -2, 0 \}$ and $B = \{ 3, -2 \}$. Then

 $A \cup B = \{ 1, -2, 0, 3 \}, A \cap B = \{ -2 \}.$

• Suppose $A = \{ 1, -2, 0 \}$ and $B = \{1, 3\}$. Then

$$A \times B = \{ (1,1), (1,3), (-2,1), (-2,3), (0,1), (0,3) \}.$$

• $f: \mathbf{R} \to \mathbf{R}$ with $f(x) = x^2 - x$ defines a function from \mathbf{R} to \mathbf{R} while $u: \mathbf{R}_+ \to \mathbf{R}^2$ with

$$u(t) = \left[\begin{array}{c} t \cos t \\ 2e^{-t} \end{array} \right].$$

defines a function from \mathbf{R}_+ to \mathbf{R}^2 .