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CMPE 240: INTRODUCTION TO LINEAR DYNAMICAL SYSTEMS

Problem Set 9 (Last One!) Due on 10-Mar-2016

1. Iterative solution of linear equations. In many applications we need to solve a set of
linear equations Ax = b, where A is nonsingular (square) and x is very large (e.g.,
x ∈ R

100000). We assume that Az can be computed at reasonable cost, for any z,
but the standard methods for computing x = A−1b (e.g., LU decomposition) are not
feasible.

A common approach is to use an iterative method, which computes a sequence x(1), x(2)
, . . . that converges to the solution x = A−1b. These methods rely on another matrix
Â, which is supposed to be ‘close’ to A. More importantly, Â has the property that
Â−1z is easily or cheaply computed for any given z.

As a simple example, the matrix Â might be the diagonal part of the matrix A (which,
presumably, has relatively small off-diagonal elements). Obviously computing Â−1z is
fast; it’s just scaling the entries of z. There are many, many other examples.

A simple iterative method, sometimes called relaxation, is to set x̂(0) equal to some
approximation of x (e.g., x̂(0) = Â−1b) and repeat, for t = 0, 1, . . .

r(t) = Ax̂(t)− b; x̂(t+ 1) = x̂(t)− Â−1r(t);

(The hat reminds us that x̂(t) is an approximation, after t iterations, of the true
solution x = A−1b.) This iteration uses only ‘cheap’ calculations: multiplication by A
and Â−1. Note that r(t) is the residual after the tth iteration.

(a) Let β = ‖Â−1(A− Â)‖ (which is a measure of how close Â and A are). Show that
if we choose x̂(0) = Â−1b, then ‖x̂(t)−x‖ ≤ βt+1‖x‖. Thus if β < 1, the iterative
method works, i.e., for any b we have x̂(t) → x as t → ∞. (And if β < 0.8, say,
then convergence is pretty fast.)

(b) Find the exact conditions on A and Â such that the method works for any starting
approximation x̂(0) and any b. Your condition can involve norms, singular values,
condition number, and eigenvalues of A and Â, or some combination, etc. Your
condition should be as explicit as possible; for example, it should not include any
limits.

Try to avoid the following two errors:
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• Your condition guarantees convergence but is too restrictive. (For example:
β = ‖Â−1(A− Â)‖ < 0.8)

• Your condition doesn’t guarantee convergence.

2. A matrix can have all entries large and yet have small gain in some directions, that is,
it can have a small σmin. For example,

A =

[

106 106

106 106

]

has “large” entries while ‖A[1 − 1]T‖ = 0.

Can a matrix have all entries small and yet have a large gain in some direction, that
is, a large σmax? Suppose, for example, that |Aij | ≤ ǫ for 1 ≤ i, j ≤ n. What can you
say about σmax(A)?

3. Condition number. Show that κ(A) = 1 if and only if A is a multiple of an orthogonal
matrix. Thus the best conditioned matrices are precisely (scaled) orthogonal matrices.

4. Tightness of the condition number sensitivity bound. Suppose A is invertible, Ax = y,
and A(x+δx) = y+δy. In the lecture notes we showed that ‖δx‖/‖x‖ ≤ κ(A)‖δy‖/‖y‖.
Show that this bound is not conservative, i.e., there are x, y, δx, and δy such that
equality holds.

Conclusion: the bound on relative error can be taken on, if the data x is in a particu-
larly unlucky direction and the data error δx is in (another) unlucky direction.

5. Detecting linear relations. Suppose we have N measurements y1, . . . , yN of a vector
signal x1, . . . , xN ∈ R

n:
yi = xi + di, i = 1, . . . , N.

Here di is some small measurement or sensor noise. We hypothesize that there is a
linear relation among the components of the vector signal x, i.e., there is a nonzero
vector q such that qTxi = 0, i = 1, . . . , N . The geometric interpretation is that all of
the vectors xi lie in the hyperplane qTx = 0. We will assume that ‖q‖ = 1, which does
not affect the linear relation.

Even if the xi’s do lie in a hyperplane qTx = 0, our measurements yi will not; we
will have qTyi = qTdi. These numbers are small, assuming the measurement noise is
small. So the problem of determing whether or not there is a linear relation among
the components of the vectors xi comes down to finding out whether or not there is a
unit-norm vector q such that qTyi, i = 1, . . . , N , are all small.

We can view this problem geometrically as well. Assuming that the xi’s all lie in the
hyperplane qTx = 0, and the di’s are small, the yi’s will all lie close to the hyperplane.
Thus a scatter plot of the yi’s will reveal a sort of flat cloud, concentrated near the
hyperplane qTx = 0. Indeed, for any z and ‖q‖ = 1, |qTz| is the distance from the
vector z to the hyperplane qTx = 0. So we seek a vector q, ‖q‖ = 1, such that all
the measurements y1, . . . , yN lie close to the hyperplane qTx = 0 (that is, qTyi are all
small).
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How can we determine if there is such a vector, and what is its value? We define the
following normalized measure:

ρ =

√

√

√

√

1

N

N
∑

i=1

(qTyi)2
/

√

√

√

√

1

N

N
∑

i=1

‖yi‖2.

This measure is simply the ratio between the root mean square distance of the vectors
to the hyperplane qTx = 0 and the root mean square length of the vectors. If ρ is
small, it means that the measurements lie close to the hyperplane qTx = 0. Obviously,
ρ depends on q.

Here is the problem: explain how to find the minimum value of ρ over all unit-norm
vectors q, and the unit-norm vector q that achieves this minimum, given the data set
y1, . . . , yN .

6. Frobenius norm of a matrix. The Frobenius norm of a matrix A ∈ R
n×n is defined as

‖A‖F =
√
TrATA. (Recall Tr is the trace of a matrix, i.e., the sum of the diagonal

entries.)

(a) Show that

‖A‖F =





∑

i,j

|Aij|2




1/2

.

Thus the Frobenius norm is simply the Euclidean norm of the matrix when it is
considered as an element of Rn2

. Note also that it is much easier to compute
the Frobenius norm of a matrix than the (spectral) norm (i.e., maximum singular
value).

(b) Show that if U and V are orthogonal, then ‖UA‖F = ‖AV ‖F = ‖A‖F. Thus the
Frobenius norm is not changed by a pre- or post- orthogonal transformation.

(c) Show that ‖A‖F =
√

σ2
1 + · · ·+ σ2

r , where σ1, . . . , σr are the singular values of A.

Then show that σmax(A) ≤ ‖A‖F ≤ √
rσmax(A). In particular, ‖Ax‖ ≤ ‖A‖F‖x‖

for all x.

7. Minimum energy required to steer the state to zero. Consider a controllable discrete-
time system x(t + 1) = Ax(t) + Bu(t), x(0) = x0. Let E(x0) denote the minimum
energy required to drive the state to zero, i.e.

E(x0) = min

{

t−1
∑

τ=0

‖u(τ)‖2 | x(t) = 0

}

.

An engineer argues as follows:

This problem is like the minimum energy reachability problem, but ‘turned
backwards in time’ since here we steer the state from a given state to zero,
and in the reachability problem we steer the state from zero to a given state.
The system z(t+1) = A−1z(t)−A−1Bv(t) is the same as the given one, except
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time is running backwards. Therefore E(x0) is the same as the minimum
energy required for z to reach x0 (a formula for which can be found in the
lecture notes).

Either justify or refute the engineer’s statement. You can assume that A is invertible.

8. Sensor selection and observer design. Consider the system ẋ = Ax, y = Cx, with

A =











1 0 0 0
1 1 0 0
0 1 1 0
1 0 0 0











, C =







1 1 0 0
0 1 1 0
0 0 0 1





 .

(This problem concerns observer design so we’ve simplified things by not even including
an input.)

We consider observers that (exactly and instantaneously) reconstruct the state from
the output and its derivatives. Such observers have the form

x(t) = F0y(t) + F1

dy

dt
(t) + · · ·+ Fk

dky

dtk
(t),

where F0, . . . , Fk are matrices that specify the observer. (Of course we require this
formula to hold for any trajectory of the system and any t, i.e., the observer has to
work!)

Consider an observer defined by F0, . . . , Fk. We say the degree of the observer is the
largest j such that Fj 6= 0. The degree gives the highest derivative of y used to
reconstruct the state.

If the ith columns of F0, . . . , Fk are all zero, then the observer doesn’t use the ith sensor
signal yi(t) to reconstruct the state. We say the observer uses or requires the sensor i
if at least one of the ith columns of F0, . . . , Fk is nonzero.

(a) What is the minimum number of sensors required for such an observer? List all
combinations (i.e., sets) of sensors, of this minimum number, for which there is
an observer using only these sensors.

(b) What is the minimum degree observer? List all combinations of sensors for which
an observer of this minimum degree can be found.
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