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Problem Set 7 Due on 25-Feb-2016

1. Fitting a Gaussian function to data. A Gaussian function has the form

f(t) = ae−(t−µ)2/σ2

.

Here t ∈ R is the independent variable, and a ∈ R, µ ∈ R, and σ ∈ R are parameters
that affect its shape. The parameter a is called the amplitude of the Gaussian, µ is
called its center, and σ is called the spread or width. We can always take σ > 0. For
convenience we define p ∈ R3 as the vector of the parameters, i.e., p = [a µ σ]T .

We are given a set of data,

t1, . . . , tN , y1, . . . , yN ,

and our goal is to fit a Gaussian function to the data. We will measure the quality of
the fit by the root-mean-square (RMS) fitting error, given by

E =

(

1

N

N
∑

i=1

(f(ti)− yi)
2

)1/2

.

Note that E is a function of the parameters a, µ, σ, i.e., p. Your job is to choose these
parameters to minimize E. You’ll use the Gauss-Newton method.

(a) Work out the details of the Gauss-Newton method for this fitting problem. Ex-
plicitly describe the Gauss-Newton steps, including the matrices and vectors that
come up. You can use the notation ∆p(k) = [∆a(k) ∆µ(k) ∆σ(k)]T to denote the
update to the parameters, i.e.,

p(k+1) = p(k) +∆p(k).

(Here k denotes the kth iteration.)

(b) Get the data t, y (and N) from the file gauss_fit_data.m, available on the class
website. Implement the Gauss-Newton (as outlined in part (a) above). You’ll
need an initial guess for the parameters. You can visually estimate them (giving
a short justification), or estimate them by any other method (but you must explain
your method).
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Plot the RMS error E as a function of the iteration number. (You should plot
enough iterations to convince yourself that the algorithm has nearly converged.)
Plot the final Gaussian function obtained along with the data on the same plot.

Repeat for another reasonable, but different initial guess for the parameters. Re-
peat for another set of parameters that is not reasonable, i.e., not a good guess
for the parameters. (It’s possible, of course, that the Gauss-Newton algorithm
doesn’t converge, or fails at some step; if this occurs, say so.) Briefly comment
on the results you obtain in the three cases.

2. Spectral resolution of the identity. Suppose A ∈ Rn×n has n linearly independent
eigenvectors p1, . . . , pn, p

T
i pi = 1, i = 1, . . . , n, with associated eigenvalues λi. Let

P = [p1 · · · pn] and Q = P−1. Let qTi be the ith row of Q.

(a) Let Rk = pkq
T
k . What is the range of Rk? What is the rank of Rk? Can you

describe the null space of Rk?

(b) Show that RiRj = 0 for i 6= j. What is R2
i ?

(c) Show that

(sI −A)−1 =
n
∑

k=1

Rk

s− λk
.

Note that this is a partial fraction expansion of (sI − A)−1. For this reason the
Ri’s are called the residue matrices of A.

(d) Show that R1 + · · · + Rn = I. For this reason the residue matrices are said to
constitute a resolution of the identity.

(e) Find the residue matrices for

A =

[

1 0
1 −2

]

both ways described above (i.e., find P and Q and then calculate the R’s, and
then do a partial fraction expansion of (sI − A)−1 to find the R’s).

3. Consider the discrete-time system x(t + 1) = Ax(t), where x(t) ∈ Rn.

(a) Find x(t) in terms of x(0).

(b) Suppose that det(zI − A) = zn. What are the eigenvalues of A? What (if
anything) can you say about x(k) for k < n and k ≥ n, without knowing x(0)?

4. Consider the linear dynamical system ẋ = Ax where A ∈ Rn×n is diagonalizable
with eigenvalues λi, eigenvectors vi, and left eigenvectors wi for i = 1, . . . , n. Assume
that λ1 > 0 and ℜλi < 0 for i = 2, . . . , n. Describe the trajectories qualitatively.
Specifically, what happens to x(t) as t → ∞? Give the answer geometrically, in terms
of x(0).
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5. Stability of a periodic system. Consider the linear dynamical system ẋ = A(t)x where

A(t) =

{

A1 2n ≤ t < 2n+ 1, n = 0, 1, 2, . . .
A2 2n+ 1 ≤ t < 2n + 2, n = 0, 1, 2, . . .

In other words, A(t) switches between the two values A1 and A2 every second. We say
that this (time-varying) linear dynamical system is stable if every trajectory converges
to zero, i.e., we have x(t) → 0 as t → ∞ for any x(0).

Find the conditions on A1 and A2 under which the periodic system is stable. Your
conditions should be as explicit as possible.

6. Rate of a Markov code. Consider the Markov language described in exercise 2-3, with
five symbols 1, 2, 3, 4, 5, and the following symbol transition rules:

• 1 must be followed by 2 or 3

• 2 must be followed by 2 or 5

• 3 must be followed by 1

• 4 must be followed by 4 or 2 or 5

• 5 must be followed by 1 or 3

(a) The rate of the code. Let KN denote the number of allowed sequences of length
N . The number

R = lim
N→∞

log2KN

N

(if it exists) is called the rate of the code, in bits per symbol. Find the rate of
this code. Compare it to the rate of the code which consists of all sequences from
an alphabet of 5 symbols (i.e., with no restrictions on which symbols can follow
which symbols).

(b) Asymptotic fraction of sequences with a given starting or ending symbol. Let FN,i

denote the number of allowed sequences of length N that start with symbol i,
and let GN,i denote the number of allowed sequences of length N that end with
symbol i. Thus, we have

FN,1 + · · ·+ FN,5 = GN,1 + · · ·+GN,5 = KN .

Find the asymptotic fractions

fi = lim
N→∞

FN,i/KN , gi = lim
N→∞

GN,i/KN .

We won’t give full credit for answers obtained by simple simulation or relatively
mindless computation; we want to see (and understand) your method.

7. Squareroot and logarithm of a (diagonalizable) matrix. Suppose that A ∈ Rn×n is
diagonalizable. Therefore, an invertible matrix T ∈ Cn×n and diagonal matrix Λ ∈
Cn×n exist such that A = TΛT−1. Let Λ = diag(λ1, . . . , λn).
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(a) We say B ∈ Rn×n is a squareroot of A if B2 = A. Let µi satisfy µ2
i = λi. Show

that B = T diag(µ1, . . . , µn)T
−1 is a squareroot of A. A squareroot is sometimes

denoted A1/2 (but note that there are in general many squareroots of a matrix).

When λi are real and nonnegative, it is conventional to take µi =
√
λi (i.e., the

nonnegative squareroot), so in this case A1/2 is unambiguous.

(b) We say B is a logarithm of A if eB = A, and we write B = logA. Following the
idea of part a, find an expression for a logarithm of A (which you can assume is
invertible). Is the logarithm unique? What if we insist on B being real?

8. Suppose ẋ = Ax with A ∈ Rn×n. Two one-second experiments are performed. In the
first, x(0) = [1 1]T and x(1) = [4 −2]T . In the second, x(0) = [1 2]T and x(1) = [5 −2]T .

(a) Find x(1) and x(2), given x(0) = [3 − 1]T .

(b) Find A, by first computing the matrix exponential.

(c) Either find x(1.5) or explain why you cannot (x(0) = [3 − 1]T ).

(d) More generally, for ẋ = Ax with A ∈ Rn×n, describe a procedure for finding A
using experiments with different initial values. What conditions must be satisfied
for your procedure to work?

9. Affine dynamical systems. A function f : Rn → Rm is called affine if it is a linear
function plus a constant, i.e., of the form f(x) = Ax + b. Affine functions are more
general than linear functions, which result when b = 0. We can generalize linear
dynamical systems to affine dynamical systems, which have the form

ẋ = Ax+Bu+ f, y = Cx+Du+ g.

Fortunately we don’t need a whole new theory for (or course on) affine systems; a
simple shift of coordinates converts it to a linear dynamical system. Assuming A is
invertible, define x̃ = x+A−1f and ỹ = y− g+CA−1f . Show that x̃, u, and ỹ are the
state, input, and output of a linear dynamical system.

10. Analysis of a power control algorithm. In this problem we consider again the power
control method described in homework problem 1-1. Please refer to this problem for the
setup and background. In that problem, you expressed the power control method as a
discrete-time linear dynamical system, and simulated it for a specific set of parameters,
with several values of initial power levels, and two target SINRs. You found that for
the target SINR value γ = 3, the powers converged to values for which each SINR
exceeded γ, no matter what the initial power was, whereas for the larger target SINR
value γ = 5, the powers appeared to diverge, and the SINRs did not appear to converge.

You are going to analyze this, now that you know alot more about linear systems.

(a) Explain the simulations. Explain your simulation results from the problem 1(b)
for the given values of G, α, σ, and the two SINR threshold levels γ = 3 and
γ = 5.
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(b) Critical SINR threshold level. Let us consider fixed values of G, α, and σ. It turns
out that the power control algorithm works provided the SINR threshold γ is less
than some critical value γcrit (which might depend on G, α, σ), and doesn’t work
for γ > γcrit. (‘Works’ means that no matter what the initial powers are, they
converge to values for which each SINR exceeds γ.)

Find an expression for γcrit in terms of G ∈ Rn×n, α, and σ. Give the simplest
expression you can. Of course you must explain how you came up with your
expression.
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