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1. Modifying measurements to satisfy known conservation laws. A vector y ∈ R
n contains

n measurements of some physical quantities x ∈ R
n. The measurements are good, but

not perfect, so we have y ≈ x.

From physical principles it is known that the quantities x must satisfy some linear
equations, i.e.,

aTi x = bi, i = 1, . . . , m,

where m < n. As a simple example, if x1 is the current in a circuit flowing into a node,
and x2 and x3 are the currents flowing out of the node, then we must have x1 = x2+x3.
More generally, the linear equations might come from various conservation laws, or
balance equations (mass, heat, energy, charge . . . ). The vectors ai and the constants
bi are known, and we assume that a1, . . . , am are independent.

Due to measurement errors, the measurement y won’t satisfy the conservation laws
(i.e., linear equations above) exactly, although we would expect aTi y ≈ bi.

An engineer proposes to adjust the measurements y by adding a correction term c ∈ R
n,

to get an adjusted estimate of x, given by

yadj = y + c.

She proposes to find the smallest possible correction term (measured by ‖c‖) such that
the adjusted measurements yadj satisfy the known conservation laws.

Give an explicit formula for the correction term, in terms of y, ai, bi. If any matrix
inverses appear in your formula, explain why the matrix to be inverted is nonsingular.
Verify that the resulting adjusted measurement satisfies the conservation laws, i.e.,
aTi yadj = bi.

2. Estimation with sensor offset and drift. We consider the usual estimation setup:

yi = aTi x+ vi, i = 1, . . . , m,

where

• yi is the ith (scalar) measurement

• x ∈ R
n is the vector of parameters we wish to estimate from the measurements
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• vi is the sensor or measurement error of the ith measurement

In this problem we assume the measurements yi are taken at times evenly spaced, T
seconds apart, starting at time t = T . Thus, yi, the ith measurement, is taken at time
t = iT . (This isn’t really material; it just makes the interpretation simpler.)

You can assume that m ≥ n and the measurement matrix

A =













aT1
aT2
...
aTm













is full rank (i.e., has rank n).

Usually we assume (often implicitly) that the measurement errors vi are random, un-
predictable, small, and centered around zero. (You don’t need to worry about how to
make this idea precise.) In such cases, least-squares estimation of x works well.

In some cases, however, the measurement error includes some predictable terms. For
example, each sensor measurement might include a (common) offset or bias, as well as
a term that grows linearly with time (called a drift). We model this situation as

vi = α + βiT + wi

where α is the sensor bias (which is unknown but the same for all sensor measurements),
β is the drift term (again the same for all measurements), and wi is part of the sensor
error that is unpredictable, small, and centered around 0.

If we knew the offset α and the drift term β we could just subtract the predictable
part of the sensor signal, i.e., α + βiT from the sensor signal. But we’re interested in
the case where we don’t know the offset α or the drift coefficient β.

Show how to use least-squares to simultaneously estimate the parameter vector x ∈ R
n,

the offset α ∈ R, and the drift coefficient β ∈ R. Clearly explain your method. If
your method always works, say so. Otherwise describe the conditions (on the matrix
A) that must hold for your method to work, and give a simple example where the
conditions don’t hold.

Remark: This is widely used in practical applications. In GPS, for example, the offset
in range measurements is due to a fixed skew between the clock in the transmitting
satellite and the receiver; the drift is due to the drift between the clocks.

3. Minimum distance and maximum correlation decoding. We consider a simple commu-
nication system, in which a sender transmits one of N possible signals to a receiver,
which receives a version of the signal sent that is corrupted by noise. Based on the
corrupted received signal, the receiver has to estimate or guess which of the N signals
was sent.

We will represent the signals by vectors in R
n. We will denote the possible signals as

a1, . . . , aN ∈ R
n. These signals, which collectively are called the signal constellation,

are known to both the transmitter and receiver.
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When the signal ak is sent, the received signal is arecd = ak + v, where v ∈ R
n is

(channel or transmission) noise. In a communications course, the noise v is described
by a statistical model, but here we’ll just assume that it is ‘small’ (and in any case, it
does not matter for the problem).

The receiver must make a guess or estimate as to which of the signals was sent, based
on the received signal arecd. There are many ways to do this, but in this problem we
explore two methods.

• Minimum distance decoding. Choose as the estimate of the decoded signal the
one in the constellation that is closest to what is received, i.e., choose ak that
minimizes ‖arecd − ai‖. For example, if we have N = 3 and

‖arecd − a1‖ = 2.2, ‖arecd − a2‖ = 0.3, ‖arecd − a3‖ = 1.1,

then the minimum distance decoder would guess that the signal a2 was sent.

• Maximum correlation decoding. Choose as the estimate of the decoded signal the
one in the constellation that has the largest inner product with the received signal,
i.e., choose ak that maximizes aTrecdai. For example, if we have N = 3 and

aTrecda1 = −1.1, aTrecda2 = 0.2, aTrecda3 = 1.0,

then the maximum correlation decoder would guess that the signal a3 was sent.

For both methods, let’s not worry about breaking ties. You can just assume that ties
never occur; one of the signals is always closest to, or has maximum inner product
with, the received signal.

Give some general conditions on the constellation (i.e., the set of vectors a1, . . . , aN)
under which these two decoding methods are the same. By ‘same’ we mean this: for
any received signal arecd, the decoded signal for the two methods is the same.

Give the simplest condition you can; we’ll take off credit for answers that are technically
correct but longwinded. You can refer to any of the concepts from the course, e.g.,
range, nullspace, independence, norms, QR factorization, etc.

You must show how the decoding schemes always give the same answer, when your
conditions hold. Also, give a specific counterexample, for which your conditions don’t
hold, and the methods differ. (We are not asking you to show that when your conditions
don’t hold, the two decoding schemes differ for some received signal.)

You might want to check simple cases like n = 1 (scalar signals), N = 2 (only two
messages in the constellation), or draw some pictures. But then again, you might not.

4. Estimating emissions from spot measurements. There are n sources of a pollutant, at
known locations s1, . . . , sn ∈ R

2. Each source emits the pollutant at some emission
rate; we let xj denote the emission rate for source j. (These are positive, but to simplify
things we won’t concern ourselves with that.) The emission rates are to be determined,
or estimated.
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We measure the total pollutant level at m spots, located at t1, . . . , tm ∈ R
2, which are

known. The total pollutant measured at spot i is the sum of the contributions from the
n sources. The contribution from source j to measurement i is given by αxj/‖sj− ti‖

2,
where α is a known (positive) constant. In other words, the pollutant concentration
from a source follows an inverse square law, and is proportional to the emission rate.
We assume that measurement spots do not coincide with the source locations, i.e., we
do not have sj = ti for any i or j. We also assume that none of the spot locations
is repeated (i.e., we have ti 6= tj for i 6= j) and that none of the source locations is
repeated (i.e., we have si 6= sj for i 6= j).

(a) Give a specific example of source and spot measurement locations, with 4 sensors
and 3 sources, for which it is impossible to find the emission rates given the spot
measurements. In this part, we ignore the issue of noise or sensor errors; we
assume the spot measurements are exactly as described above. To show that your
configuration is a valid example, give two specific different sets of emission rates
that yield identical spot measurements. You are free to (briefly) explain your
example using concepts such as range, nullspace, rank, and so on; but remember,
we want a specific numerical example, such as as s1 = [0 1]T , . . . , s3 = [1 2]T ,
t1 = [1 1]T , . . . , t4 = [3 2]T . (And similarly for the two emission rates that give
the same spot measurements.)

(b) Get the data from the file emissions_data.m that is available on the class web
site. This file defines three source locations (given as a 2× 3 matrix; the columns
give the locations), and ten spot measurement locations (given as a 2×10 matrix).
It also gives two sets of spot measurements: one for part (b), and one for part (c).
Be careful to use the right set of measurements for each problem!

The spot measurements are not perfect (as we assumed in part (a)); they contain
small noise and errors. Estimate the pollutant emission rates. Explain your
method, and give your estimate for the emissions rates of the three sources.

(c) Now we suppose that one of the spot measurments is faulty, i.e., its associated
noise or error is far larger than the errors of the other spot measurements. Explain
how you would identify or guess which one is malfunctioning, and then estimate
the source emission rates. Carry out your method on the data given in the matlab
file. Be sure to tell us which spot measurement you believe to be faulty, and what
your guess of the emission rates is. (The emission rates are not the same as in
part (b), but the source and spot measurement locations are.)

5. Optimal flow on a data collection network. We consider a communications network
with m nodes, plus a special destination node, and n communication links. Each
communication link connects two (distinct) nodes and is bidirectional, i.e., information
can flow in either direction. We will assume that the network is connected, i.e., there
is a path, or sequence of links, from every node (including the special destination
node) to every other node. With each communication link we associate a directed arc,
which defines the direction of information flow that we will call positive. Using these
reference directions, the flow or traffic on link j is denoted fj. (The units are bits per
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second, but that won’t matter to us.) The traffic on the network (i.e., the flow in each
communication link) is given by a vector f ∈ R

n.

A small example is shown in part 2 of this problem. In this example, nodes 1 and 3
are connected by communication link 4, and the associated arc points from node 1 to
node 3. Thus f4 = 12 means the flow on that link is 12 (bits per second), from node
1 to node 3. Similarly, f4 = −3 means the flow on link 4 is 3 (bits per second), from
node 3 to node 1.

External information enters each of the m regular nodes and flows across links to the
special destination node. In other words, the network is used to collect information
from the nodes and route it through the links to the special destination node. (That
explains why we call it a data collection network.) At node i, an external information
flow si (which is nonnegative) enters. The vector s ∈ R

m of external flows is sometimes
called the source vector.

Information flow is conserved. This means that at each node (except the special desti-
nation node) the sum of all flows entering the node from communication links connected
to that node, plus the external flow, equals the sum of the flows leaving that node on
communication links. As an example, consider node 3 in the network of part 2. Links
4 and 5 enter this node, and link 6 leaves the node. Therefore, flow conservation at
node 3 is given by

f4 + f5 + s3 = f6.

The first two terms on the left give the flow entering node 3 on links 4 and 5; the last
term on the left gives the external flow entering node 3. The term on the righthand
side gives the flow leaving over link 6. Note that this equation correctly expresses flow
conservation regardless of the signs of f4, f5, and f6.

Finally, here is the problem.

(a) The vector of external flows, s ∈ R
m, and the network topology, are given, and

you must find the flow f that satisfies the conservation equations, and minimizes
the mean-square traffic on the network, i.e.,

1

n

n
∑

j=1

f 2
j .

Your answer should be in terms of the external flow s, and the node incidence

matrix A ∈ R
m×n that describes the network topology. The node incidence

matrix is defined as

Aij =











1 arc j enters (or points into) node i
−1 arc j leaves (or points out of) node i
0 otherwise.

Note that each row of A is associated with a node on the network (not including
the destination node), and each column is associated with an arc or link.
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(b) Now consider the specific (and very small) network shown below. The nodes are
shown as circles, and the special destination node is shown as a square. The
external flows are

s =











1
4
10
10











.

One simple feasible flow is obtained by routing all the external flow entering each
node along a shortest path to the destination. For example, all the external flow
entering node 2 goes to node 1, then to the destination node. For node 3, which
has two shortest paths to the destination, we arbitrarily choose the path through
node 4. This simple routing scheme results in the feasible flow

fsimple =



























5
4
0
0
0
10
20



























.

Find the mean square optimal flow for this problem (as in part 1). Compare the
mean square flow of the optimal flow with the mean square flow of fsimple.
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