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CMPE 240: INTRODUCTION TO LINEAR DYNAMICAL SYSTEMS

Problem Set 8

1. Two separate experiments are performed for t ≥ 0 on the single-input single-output
(SISO) linear system

ẋ = Ax+Bu, y = Cx+Du, x(0) = [1 2 − 1 ]T

(the initial condition is the same in each experiment). In the first experiment, u(t) =
e−t and the resulting output is y(t) = e−3t + e−2t. In the second, u(t) = e−3t and the
resulting output is y(t) = 3e−3t − e−2t.

(a) Can you determine the transfer function C(sI−A)−1B+D from this information?
If it is possible, do so. If not, find two linear systems consistent with all the data
given which have different transfer functions.

(b) Can you determine A, B, C, or D?

2. A method for rapidly driving the state to zero. We consider the discrete-time linear
dynamical system

x(t + 1) = Ax(t) +Bu(t),

where A ∈ R
n×n and B ∈ R

n×k, k < n, is full rank.

The goal is to choose an input u that causes x(t) to converge to zero as t → ∞. An
engineer proposes the following simple method: at time t, choose u(t) that minimizes
‖x(t+1)‖. The engineer argues that this scheme will work well, since the norm of the
state is made as small as possible at every step. In this problem you will analyze this
scheme.

(a) Find an explicit expression for the proposed input u(t) in terms of x(t), A, and
B.

(b) Now consider the linear dynamical system x(t + 1) = Ax(t) + Bu(t) with u(t)
given by the proposed scheme (i.e., as found in (2a)). Show that x satisfies an
autonomous linear dynamical system equation x(t + 1) = Fx(t). Express the
matrix F explicitly in terms of A and B.
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(c) Now consider a specific case:

A =

[

0 3
0 0

]

, B =

[

1
1

]

.

Compare the behavior of x(t+1) = Ax(t) (i.e., the orginal system with u(t) = 0)
and x(t + 1) = Fx(t) (i.e., the original system with u(t) chosen by the scheme
described above) for a few initial conditions. Determine whether each of these
systems is stable.

3. Analysis of cross-coupling in interconnect wiring. In integrated circuits, wires which
connect the output of one gate to the inputs of one (or more) other gates are called nets.
As feature sizes shrink to well below a micron (i.e., ‘deep submicron’) the capacitance
of a wire to the substrate (which in a simple analysis can be approximated as ground),
as well as to neighboring wires, must be taken into account.

A simple lumped model of three nets is shown below. The inputs are the voltage sources
u1, u2, u3, and the outputs are the three voltages labeled y1, y2, y3. The resistances
R1, . . . , R6 represent the resistance of the wire segments. The capacitances C1, . . . , C6

are capacitances from the interconnect wires to the substrate; the capacitances C7 and
C8 are capacitances between wires 1 and 2, and wires 2 and 3, respectively. (The
different locations of the these cross-coupling capacitances models the wire 1 crossing
over wire 2 near the driving gate, and wire 2 crossing over wire 3 near the end of the
wire, but you don’t need to know this to do the problem . . . ) In static conditions,
the circuit reduces to three wires (with resistance R1 + R2, R3 + R4, and R5 + R6,
respectively) connecting the inputs to the outputs.

u1(t)

u2(t)

u3(t)

y1(t)

y2(t)

y3(t)

R1 R2

R3 R4

R5 R6

C1 C2

C3 C4

C5 C6

C7

C8

To simplify the problem we’ll assume that all resistors have value 1 and all capacitors
have value 1.

We recognize that some of you don’t know how to write the equations that govern this
circuit, so we’ve done it for you. (If you’re an EE student in this category, then shame
on you.)
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The equations are
Cv̇ +Gv = Fu, y = Kv,

where

C =





















2 0 −1 0 0 0
0 1 0 0 0 0
−1 0 2 0 0 0
0 0 0 2 0 −1
0 0 0 0 1 0
0 0 0 −1 0 2





















, G =





















2 −1 0 0 0 0
−1 1 0 0 0 0
0 0 2 −1 0 0
0 0 −1 1 0 0
0 0 0 0 2 −1
0 0 0 0 −1 1





















,

F =





















1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0





















, K =







0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1







and v ∈ R
6 is the vector of voltages at capacitors C1, . . . , C6, respectively. To save

you the trouble of typing these in, we’ve put an mfile interconn.m on the course web
page, which defines these matrices.

The inputs (which represent the gates that drive the three nets) are Boolean valued,
i.e., ui(t) ∈ {0, 1} for all t. In this problem we will only consider inputs that switch
(change value from 0 to 1 or 1 to 0) at most once.

(a) 50%-threshold delay. For t < 0, the system is in static condition, and the inputs
have values u(t) = f for t < 0, where fi ∈ {0, 1}. At t = 0, the input switches to
the Boolean vector g, i.e., for t ≥ 0, u(t) = g, where gi ∈ {0, 1}. Since the DC
gain matrix of this system is I, and the system is stable, the output converges to
the input value: y(t) → g as t → ∞.

We define the 50%-threshold delay of the transition as smallest T such that |yi(t)−
gi| ≤ 0.5 for t ≥ T , and for i = 1, 2, 3. (If the following gate thresholds were set
at 0.5, then this would be first time after which the outputs would be guaranteed
correct.)

Among the 64 possible transitions, find the largest (i.e., worst) 50%-threshold
delay. Give the largest delay, and also describe which transition gives the largest
delay (e.g., the transition with f = (0, 0, 1) to g = (1, 0, 0)).

(b) Maximum bounce due to cross-coupling. Now suppose that input 2 remains zero,
but inputs 1 and 3 undergo transitions at times t = T1 and t = T3, respectively.
(In part 1, in contrast, all transitions occured at t = 0.) To be more precise (and
also so nobody can say we weren’t clear),

u1(t) =

{

f1 for t < T1

g1 for t ≥ T1

, u3(t) =

{

f3 for t < T3

g3 for t ≥ T3

, u2(t) = 0 for all t,

where f1, f3, g1, g3 ∈ {0, 1}.
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The transitions in inputs 1 and 3 induce a nonzero response in output 2. (But
y2 does converge back to zero, since u2 = 0.) This phenomenon of y2 deviating
from zero (which is what it would be if there were no cross-coupling capacitance)
is called bounce (induced by the cross-coupling between the nets). If for any t,
y2(t) is large enough to trigger the following gate, things can get very, very ugly.

What is the maximum possible bounce? In other words, what is the maximum
possible value of y2(t), over all possible t, T1, T3, f1, f3, g1, g3? Be sure to give not
only the maximum value, but also the times t, T1, and T3, and the transitions
f1, f3, g1, g3, which maximize y(t).

Note: in this problem we don’t consider multiple transitions, but it’s not hard to do
so.

4. Norm expressions for quadratic forms. Let f(x) = xTAx (with A = AT ∈ R
n×n) be a

quadratic form.

(a) Show that f is positive semidefinite (i.e., A ≥ 0) if and only if it can be expressed
as f(x) = ‖Fx‖2 for some matrix F ∈ R

k×n. Explain how to find such an F
(when A ≥ 0). What is the size of the smallest such F (i.e., how small can k be)?

(b) Show that f can be expressed as a difference of squared norms, in the form
f(x) = ‖Fx‖2 − ‖Gx‖2, for some appropriate matrices F and G. How small can
the sizes of F and G be?

5. Congruences and quadratic forms. Suppose A = AT ∈ R
n×n.

(a) Let Z ∈ R
n×p be any matrix. Show that ZTAZ ≥ 0 if A ≥ 0.

(b) Suppose that T ∈ R
n×n is invertible. Show that T TAT ≥ 0 if and only if A ≥ 0.

When T is invertible, TAT T is called a congruence of A and TAT T and A are
said to be congruent. This problem shows that congruences preserve positive
semidefiniteness.

6. Positive semidefinite (PSD) matrices.

(a) Show that if A and B are PSD and α ∈ R, α ≥ 0, then so are αA and A+B.

(b) Show that any (symmetric) submatrix of a PSD matrix is PSD. (To form a sym-
metric submatrix, choose any subset of {1, . . . , n} and then throw away all other
columns and rows.)

(c) Show that if A ≥ 0, Aii ≥ 0.

(d) Show that if A ≥ 0, |Aij | ≤
√

AiiAjj. In particular, if Aii = 0, then the entire ith
row and column of A are zero.

7. Gram matrices. Given functions fi : [a, b] → R, i = 1, . . . , n, the Gram matrix
G ∈ R

n×n associated with them is defined by

Gij =
∫ b

a
fi(t)fj(t) dt.
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(a) Show that G = GT ≥ 0.

(b) Show that G is singular if and only if the functions f1, . . . , fn are linearly depen-
dent.

8. Express
∑n−1

i=1 (xi+1 − xi)
2 in the form xTPx with P = P T . Is P ≥ 0? P > 0?

9. Suppose A and B are symmetric matrices that yield the same quadratic form, i.e.,
xTAx = xTBx for all x. Show that A = B.

Hint: first try x = ei (the ith unit vector) to conclude that the entries of A and B on
the diagonal are the same; then try x = ei + ej .

10. A power method for computing ‖A‖. The following method can be used to compute the
largest singular value (σ1), and also the corresponding left and right singular vectors
(u1 and v1) of A ∈ R

m×n. You can assume (to simplify) that the largest singular value
of A is isolated, i.e., σ1 > σ2. Let z(0) = a ∈ R

n be nonzero, and then repeat the
iteration

w(t) = Az(t); z(t + 1) = ATw(t);

for t = 1, 2, . . .. For large t, w(t)/‖w(t)‖ ≈ u1 and z(t)/‖z(t)‖ ≈ v1.

Analyze this algorithm. Show that it ‘usually’ works. Be very explicit about when it
fails. (In practice it always works.)

11. Optimal time compression equalizer. We are given the (finite) impulse response of a
communications channel, i.e., the real numbers

c1, c2, . . . , cn.

Our goal is to design the (finite) impulse response of an equalizer, i.e., the real numbers

w1, w2, . . . , wn.

(To make things simple, the equalizer has the same length as the channel.)

The equalized channel response h is given by the convolution of w and c, i.e.,

hi =
i−1
∑

j=1

wjci−j , i = 2, . . . , 2n.

This is shown below.

∗c ∗w

The goal is to choose w so that most of the energy of the equalized impulse response
h is concentrated within k samples of t = n + 1, where k < n − 1 is given. To define
this formally, we first define the total energy of the equalized response as

Etot =
2n
∑

i=2

h2
i ,
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and the energy in the desired time interval as

Edes =
n+1+k
∑

i=n+1−k

h2
i .

For any w for which Etot > 0, we define the desired to total energy ratio, or DTE, as
DTE = Edes/Etot. Thus number is clearly between 0 and 1; it tells us what fraction of
the energy in h is contained in the time interval t = n+ 1− k, . . . , t = n+ 1 + k. You
can assume that h is such that for any w 6= 0, we have Etot > 0.

(a) How do you find a w 6= 0 that maximizes DTE? You must give a very clear
description of your method, and explain why it works. Your description and
justification must be very clear. You can appeal to any concepts used in the class,
e.g., least-squares, least-norm, eigenvalues and eigenvectors, singular values and
singular vectors, matrix exponential, and so on.

(b) Carry out your method for time compression length k = 1 on the data found in
time_comp_data.m. Plot your solution w, the equalized response h, and give the
DTE for your w.

Please note: You do not need to know anything about equalizers, communications
channels, or even convolution; everything you need to solve this problem is clearly
defined in the problem statement.
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