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1. Harmonic oscillator. The system ẋ =

[

0 ω
−ω 0

]

x is called a harmonic oscillator.

(a) Find the eigenvalues, resolvent, and state transition matrix for the harmonic
oscillator. Express x(t) in terms of x(0).

(b) Sketch the vector field of the harmonic oscillator.

(c) The state trajectories describe circular orbits, i.e., ‖x(t)‖ is constant. Verify this
fact using the solution from part (a).

(d) You may remember that circular motion (in a plane) is characterized by the
velocity vector being orthogonal to the position vector. Verify that this holds for
any trajectory of the harmonic oscillator. Use only the differential equation; do
not use the explicit solution you found in part (a).

2. Properties of the matrix exponential.

(a) Show that eA+B = eAeB if A and B commute, i.e., AB = BA. The converse is
also true, i.e., if eA+B = eAeB then A and B commute. (But it is hard to show.)

(b) Carefully show that d

dt
eAt = AeAt = eAtA.

3. Determinant of matrix exponential.

(a) Suppose the eigenvalues of A ∈ R
n×n are λ1, . . . , λn. Show that the eigenvalues of

eA are eλ1 , . . . , eλn. You can assume that A is diagonalizable, although it is true
in the general case.

(b) Show that det eA = eTrA.

Hint: detX is the product of the eigenvalues of X , and TrY is the sum of the
eigenvalues of Y .

4. Linear system with a quadrant detector. In this problem we consider the specific system

ẋ = Ax =

[

0.5 1.4
−0.7 0.5

]

x.
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We have a detector or sensor that gives us the sign of each component of the state
x = [x1 x2]

T each second:

y1(t) = sgn(x1(t)), y2(t) = sgn(x2(t)), t = 0, 1, 2, . . .

where the function sgn : R → R is defined by

sgn(a) =











1 a > 0
0 a = 0

−1 a < 0

There are several ways to think of these sensor measurements. You can think of
y(t) = [y1(t) y2(t)]

T as determining which quadrant the state is in at time t (thus the
name quadrant detector). Or, you can think of y(t) as a one-bit quantized measurement
of the state at time t.

Finally, the problem. You observe the sensor measurements

y(0) =
[

1
−1

]

, y(1) =
[

1
−1

]

.

Based on these measurements, what values could y(2) possibly take on?

In terms of the quadrants, the problem can be stated as follows. x(0) is in quadrant IV,
and x(1) is also in quadrant IV. The question is: which quadrant(s) can x(2) possibly
be in?

You do not know the initial state x(0).

Of course, you must completely justify and explain your answer.

5. Some basic properties of eigenvalues. Show that

(a) the eigenvalues of A and AT are the same

(b) A is invertible if and only if A does not have a zero eigenvalue

(c) if the eigenvalues of A are λ1, . . . , λn and A is invertible, then the eigenvalues of
A−1 are 1/λ1, . . . , 1/λn,

(d) the eigenvalues of A and T−1AT are the same.

Hint: you’ll need to use the facts detAB = detA detB and detA−1 = 1/ detA (pro-
vided A is invertible).

6. Characteristic polynomial. Consider the characteristic polynomial X (s) = det(sI −A)
of the matrix A ∈ R

n×n.

(a) Show that X is monic, which means that its leading coefficient is one: X (s) =
sn + · · ·.

(b) Show that the sn−1 coefficient of X is given by −TrA. (TrX is the trace of a
matrix: TrX =

∑

n

i=1Xii.)
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(c) Show that the constant coefficient of X is given by det(−A).

(d) Let λ1, . . . , λn denote the eigenvalues of A, so that

X (s) = sn + an−1s
n−1 + · · ·+ a1s+ a0 = (s− λ1)(s− λ2) · · · (s− λn).

By equating coefficients show that an−1 = −
∑

n

i=1 λi and a0 =
∏

n

i=1(−λi).

7. Left eigenvector properties. Suppose w is a left eigenvector of A ∈ R
n×n with real

negative eigenvalue λ.

(a) Find a simple expression for wT eAt.

(b) Let α < β. The set { z | α ≤ wTz ≤ β } is referred to as a slab. Briefly explain
this terminology. Draw a picture in R

2.

(c) Show that the slab { z | 0 ≤ wTz ≤ β } is invariant for ẋ = Ax.

8. Some Matlab exercises. Consider the continuous-time system ẋ = Ax with

A =











−0.1005 1.0939 2.0428 4.4599
−1.0880 −0.1444 5.9859 −3.0481
−2.0510 −5.9709 −0.1387 1.9229
−4.4575 3.0753 −1.8847 −0.1164











.

(a) What are the eigenvalues of A? Is the system stable? You can use the command
eig in Matlab.

(b) Plot a few trajectories of x(t), i.e., x1(t), x2(t), x3(t) and x4(t), for a few initial
conditions. To do this you can use the matrix exponential command in Matlab
expm (not exp which gives the element-by-element exponential of a matrix), or
more directly, the Matlab command initial (use help initial for details.)
Verify that the qualitative behavior of the system is consistent with the eigenvalues
you found in part (8a).

(c) Find the matrix Z such that Zx(t) gives x(t + 15). Thus, Z is the ‘15 seconds
forward predictor matrix’.

(d) Find the matrix Y such that Y x(t) gives x(t − 20). Thus Y reconstructs what
the state was 20 seconds ago.

(e) Briefly comment on the size of the elements of the matrices Y and Z.

(f) Find x(0) such that x(10) = [1 1 1 1]T .
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