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Problem Set 3

1. Derivative with vector variable. Let y(x) be a real-valued (scalar) function that takes a
vector argument x in R

n. We define the derivative of the function y (taken at a given
point x) as the vector g ∈ R

n such that

gT∆x

‖∆x‖
= lim

h→0

y(x+ h∆x)− y(x)

‖h∆x‖
,

for any ∆x ∈ R
n. Equivalently you could constrain ∆x to be a unit vector, and then

gT∆x = lim
h→0

y(x+ h∆x)− y(x)

h

Equivalently, and perhaps more clearly, the derivative is the vector g such that, for
small ∆x,

gT∆x ≈ ∆y

where ∆y = y(x+∆x)− y(x) (with equality in the limit as ‖∆x‖ → 0).

Use this definition to obtain the derivative g for:

(a) y(x) = bTx, where b ∈ R
n.

(b) y(x) = xTAx, for a general matrix A ∈ R
n×n.

(c) y(x) = xTAx, where the matrix A is symmetric, i.e., AT = A.

2. Bessel’s inequality. Suppose the columns of U ∈ R
n×k are orthonormal. Show that

‖UTx‖ ≤ ‖x‖. When do we have ‖UTx‖ = ‖x‖?

3. Orthogonal matrices.

(a) Show that if U and V are orthogonal, then so is UV .

(b) Show that if U is orthogonal, then so is U−1.

(c) Suppose that U ∈ R
2×2 is orthogonal. Show that U is either a rotation or a

reflection. Make clear how you decide whether a given orthogonal U is a rotation
or reflection.
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Remark: this result is true in higher dimensions: an orthogonal matrix is either a
rotation about some axis, or a reflection.

4. Projection matrices. A matrix P ∈ R
n×n is called a projection matrix if P = P T and

P 2 = P .

(a) Show that if P is a projection matrix then so is I − P .

(b) Suppose that the columns of U ∈ R
n×k are orthonormal. Show that UUT is a

projection matrix. (Later we will show that the converse is true: every projection
matrix can be expressed as UUT for some U with orthonormal columns.)

(c) Suppose A ∈ R
n×k is full rank, with k ≤ n. Show that A(ATA)−1AT is a projec-

tion matrix.

(d) If S ⊆ R
n and x ∈ R

n, the point y in S closest to x is called the projection of x
on S. Show that if P is a projection matrix, then y = Px is the projection of x
on R(P ). (Which is why such matrices are called projection matrices . . . )

5. Sensor integrity monitor. A suite of m sensors yields measurement y ∈ R
m of some

vector of parameters x ∈ R
n. When the system is operating normally (which we hope

is almost always the case) we have y = Ax, where m > n. If the system or sensors fail,
or become faulty, then we no longer have the relation y = Ax.

We can exploit the redundancy in our measurements to help us identify whether such a
fault has occured. We’ll call a measurement y consistent if it has the form Ax for some
x ∈ R

n. If the system is operating normally then our measurement will, of course, be
consistent. If the system becomes faulty, we hope that the resulting measurement y
will become inconsistent, i.e., not consistent. (If we are really unlucky, the system will
fail in such a way that y is still consistent. Then we’re out of luck.)

A matrix B ∈ R
k×m is called an integrity monitor if the following holds:

• By = 0 for any y which is consistent.

• By 6= 0 for any y which is inconsistent.

If we find such a matrix B, we can quickly check whether y is consistent; we can send
an alarm if By 6= 0. Note that the first requirement says that every consistent y does
not trip the alarm; the second requirement states that every inconsistent y does trip
the alarm.

Finally, the problem. Find an integrity monitor B for the matrix

A =

















1 2 1
1 −1 −2

−2 1 3
1 −1 −2
1 1 0

















.

Your B should have the smallest k (i.e., number of rows) as possible.
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As usual, you have to explain what you’re doing, as well as giving us your explicit
matrix B. You must also verify that the matrix you choose satisfies the requirements.

Hints:

• You might find one or more of the Matlab commands orth, null, or qr useful.
Then again, you might not; there are many ways to find such a B.

• When checking that your B works, don’t expect to have By exactly zero for a
consistent y; because of roundoff errors in computer arithmetic, it will be really,
really small. That’s OK.

• Be very careful typing in the matrix A. It’s not just a random matrix.

6. Approximate inductance formula. The figure below shows a planar spiral inductor,
implemented in CMOS, for use in RF circuits.

d

D

w

The inductor is characterized by four key parameters:

• n, the number of turns (which is a multiple of 1/4, but that needn’t concern us)

• w, the width of the wire

• d, the inner diameter

• D, the outer diameter

The inductance L of such an inductor is a complicated function of the parameters n,
w, d, and D. The inductance L can be found by solving Maxwell’s equations, which
takes considerable computer time, or by fabricating the inductor and measuring the
inductance.

In this problem you will develop a simple approximate inductance model of the form

L̂ = αnβ1wβ2dβ3Dβ4,

where α, β1, β2, β3, β4 ∈ R are constants that characterize the approximate model.
(since L is positive, we have α > 0, but the constants β2, . . . , β4 can be negative.) This
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simple approximate model, if accurate enough, can be used for design of planar spiral
inductors.

The file inductor data.m on the course web site contains data for 50 inductors. (The
data is real, not that it would affect how you solve the problem . . . ) For inductor i,
we give parameters ni, wi, di, and Di (all in µm), and also, the inductance Li (in nH)
obtained from measurements. (The data are organized as vectors of length 50. Thus,
for example, w13 gives the wire width of inductor 13.)

Your task, i.e., the problem, is to find α, β1, . . . , β4 so that

L̂i = αnβ1

i wβ2

i dβ3

i Dβ4

i ≈ Li for i = 1, . . . , 50.

Your solution must include a clear description of how you found your parameters, as
well as their actual numerical values. Note that we have not specified the criterion
that you use to judge the approximate model (i.e., the fit between L̂i and Li); we leave
that to your engineering judgment. But be sure to tell us what criterion you use.

We define the percentage error between L̂i and Li as

ei = 100|L̂i − Li|/Li.

Find the average percentage error for your model, i.e., (e1 + · · · + e50)/50. (We are
only asking you to find the average percentage error for your model; we do not require
that your model minimize the average percentage error.)

Hint: you might find it easier to work with logL.

7. Least-squares deconvolution. A communications channel is modeled by a finite-impulse-
response (FIR) filter:

y(t) =
n−1
∑

τ=0

u(t− τ)h(τ),

where u : Z → R is the channel input sequence, y : Z → R is the channel output,
and h(0), . . . , h(n−1) is the impulse response of the channel. In terms of discrete-time
convolution we write this as y = h ∗ u.

You will design a deconvolution filter or equalizer which also has FIR form:

z(t) =
m−1
∑

τ=0

y(t− τ)g(τ),

where z : Z → R is the filter output, y is the channel output, and g(0), . . . , g(m− 1)
is the impulse response of the filter, which we are to design.

This is shown in the block diagram below.

u
y

z∗h ∗g
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The goal is to choose g = (g(0), . . . , g(m−1)) so that the filter output is approximately
the channel input delayed by D samples, i.e., z(t) ≈ u(t − D). Since z = g ∗ h ∗ u
(discrete-time convolution), this means that we’d like

(g ∗ h)(t) ≈

{

0 t 6= D,
1 t = D

We will refer to g ∗ h as the equalized impulse response; the goal is to make it as close
as possible to a D-sample delay.

Specifically, we want the least-squares equalizer is g that minimizes the sum-of-squares
error

∑

t6=D

(g ∗ h)(t)2,

subject to the constraint
(g ∗ h)(D) = 1.

To solve the problem below you’ll need to get the file deconv data.m from the class
web page in the Figures files section. It will define the channel impulse response h
as a Matlab vector h. (Indices in Matlab run from 1 to n, while the argument of the
channel impulse response runs from t = 0 to t = n− 1, so h(3) in Matlab corresponds
to h(2).)

(a) Find the least-squares equalizer g, of length m = 20, with delay D = 12. Plot
the impulse responses of the channel (h) and the equalizer (g). Plot the equalized
impulse response (g ∗ h).

(b) The vector y (also defined in deconv data.m) contains the channel output corre-
sponding to a signal u passed through the channel (i.e., y = h ∗ u). The signal u
is binary, i.e., u(t) ∈ {−1, 1}, and starts at t = 0 (i.e., u(t) = 0 for t < 0). Pass
y through the least-squares equalizer found in part a, to form the signal z. Give
a histogram plot of the amplitude distribution of both y and z. (You can remove
the first and last D samples of z before making the histogram plot.) Comment
on what you find.

Figures hints: The command conv convolves two vectors; the command hist plots a
histogram (of the amplitude distribution).
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