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4.2 Surface waves

Surface waves are probably the most common example of waves we are visually
exposed to in everyday life – from small-scale waves in the bathtub to medium-
scale waves approaching a the beach, to very large-scale waves travelling on the
surface of the deep ocean. However, because they propagate on the interface
between a liquid and air, their mathematical description is significantly more
complicated than that of pressure or internal gravity waves, which is why we
have deferred studying them until now.

4.2.1 Derivation of the wave equation for surface waves

This section is adapted from the Geophysical Fluid Dynamics Summer Program
2009 Lectures (specifically, Lecture 1), given by Harvey Segur, and written up
by Michael Bates.

We begin our derivation by considering a layer of liquid. It is located above
a bottom boundary, whose equation is z = −h(x, y). At rest, the surface of
the liquid is at z = 0. When waves are present, on the other hand, the surface
undulates, and its equation is given by z = η(x, y, t). The liquid is incompress-
ible, so that ∇ · u = 0 within it. We will also neglect all density perturbations
entirely, so that ρ is constant. The setup is illustrated in Figure 4.1.

z = 0

z =η(x, y, t)

z = −h(x, y)

AIR$

WATER$

GROUND$

Figure 4.1: Model setup

For simplicity, we will also assume that at time t = 0, any fluid motion in
the liquid is irrotational, which means that its vorticity ω = ∇ × u = 0. This
restricts the class of initial conditions, and therefore the class of waves we are
considering, but will significantly simplify the mathematical description of the
model. Indeed, the equation of motion in the limit where viscosity is negligible,
is

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ g (4.1)
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Since ρ is constant, taking the curl of this equation we get

∂ω

∂t
+ u · ∇ω = ω · ∇u (4.2)

This shows that if, at t = 0 ω = 0 then ω remains zero at all times afterwards.
In other words, in an incompressible non-rotating and non-viscous fluid it is not
possible to create any vorticity if none is originally present.

The advantage of considering irrotational flows is that they can be written
as

u = ∇φ (4.3)

where φ is any scalar function of (x, y, z, t). Furthermore, incompressibility then
implies ∇2φ = 0. Plugging this into the momentum equation, and writing each
term as a gradient (using the fact that ρ is constant) we get

∇
(
∂φ

∂t
+

1

2
|∇φ|2 +

p

ρ
+ gz

)
= 0. (4.4)

Integrating this expression with respect to all spatial variables gives

∂φ

∂t
+ 1

2 |∇φ|
2 +

p

ρ
+ gz = F (t) (4.5)

where F (t) is an integration function of time only. Note that since the velocity
potential φ is defined up to an arbitrary additive function of time, we may
absorb F (t) into ∂φ/∂t. We thus recover the well-known Bernoulli’s Law.

We assume that the bottom boundary is impermeable, and thus, enforce a
“no-normal flow” boundary condition,

u · ∇ (z + h(x, y)) = 0 at z = −h(x, y) , (4.6)

where ∇ (z + h(x, y)) is the normal vector to the bottom surface. Using the
definition of the velocity potential, equation (4.3), we obtain,

∂φ

∂z
+
∂φ

∂x

∂h

∂x
+
∂φ

∂y

∂h

∂y
= 0→ ∂φ

∂z
+∇φ · ∇h = 0 . (4.7)

On the surface, z = η(x, y, t), we require the continuity of the pressure field
p. Just above the surface, there are two contribution to pressure: a pressure
due to the weight of the atmosphere and a pressure given by the surface tension,
which conceptually acts like an elastic membrane stretched over the surface of
the liquid.

p = pair − σ∇ · n̂ at z = η(x, y, t) , (4.8)

where the second term is the surface tension Young-Laplace term, and σ is a
constant representing its strength, with units Nm−1, and n̂ is the surface normal
unit vector. For water at room temperature, σ ' 70 N/m. From here on, we
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assume that pair = 0, again without loss of generality. Note that we are ignoring
the effects of wind. Vector calculus tells us that

n̂ =
∇η√

1 + |∇η|2
. (4.9)

Using (4.8) in Bernoulli’s Law (4.5) gives us the dynamic boundary condition
on the free surface,

∂φ

∂t
+

1

2
|∇φ|2 + gη =

σ

ρ
∇ ·

{
∇η√

1 + |∇η|2

}
. (4.10)

Finally, we obtain a kinematic boundary condition by assuming that a ma-
terial element on the free surface stays on the free surface,

D

Dt
(z(t)− η(x, y, t)) = 0. (4.11)

Noting that since Dz/Dt = w = ∂zφ and Dη/Dt = ∂tη + u · ∇η, we obtain

∂η

∂t
+∇φ · ∇η =

∂φ

∂z
, (4.12)

when evaluated at z = η.

To summarize, the governing equations are

∂φ

∂t
+

1

2
|∇φ|2 + gη =

σ

ρ
∇ ·

{
∇η√

1 + |∇η|2

}
on z = η(x, y, t)

∂η

∂t
+∇φ · ∇η =

∂φ

∂z
on z = η(x, y, t)

∇2φ = 0 for − h(x, y) < z < η(x, y, t)

∂φ

∂z
+∇φ · ∇h = 0 on z = −h(x, y).

The first equation relates the evolution of the velocity potential for a material
element on the surface to the restoring force of gravity and the surface tension.
The second equation describes the kinematic evolution of the free surface. The
third equation is the continuity equation, where we have assumed that the fluid
is incompressible and irrotational. The last equation is a statement that we do
not allow any flow across the impermeable bottom boundary. This equations are
highly nonlinear, but could in principle describe the evolution of high-amplitude
waves, as long as their surface is a single-valued function (this rules out over-
turning waves). In order to make progress in studying these waves, however, we
first linearize them and only consider small-amplitude perturbations.
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4.2.2 Small-amplitude surface waves in a layer of constant
depth.

This section is adapted from the Geophysical Fluid Dynamics Summer Program
2009 Lectures (specifically, Lecture 2), given by Harvey Segur and written up by
Michael Bate and Ali Mashayekhi.

In this section, we will assume for simplicity that h is constant. The bot-
tom boundary condition then becomes ∂φ/∂z = 0 at z = −h. The results
can be generalized using the wave-packet approximation if h is a slowly varying
function of position. This will be one of the projects for the course.

Plane wave solutions

Assuming that all perturbations are small amplitude, we can linearize the gov-
erning equations by neglecting any nonlinear term in η or φ. We get

∂φ

∂t
+ gη =

σ

ρ
∇2η on z = η(x, y, t)

∂η

∂t
=

∂φ

∂z
on z = η(x, y, t)

∇2φ = 0 for − h(x, y) < z < η(x, y, t)

∂φ

∂z
+∇φ · ∇h = 0 on z = −h(x, y).

Now, applying “boundary conditions” at the free surface is a little bit awkward,
since η itself is an unknown of the problem. However, if the waves are small
amplitude, then note that by Taylor expansion

φ(x, y, η, t) = φ(x, y, 0, t) + η(x, y, t)
∂φ

∂z

∣∣∣∣
z=0

+ ... (4.13)

so that the first and second equations, in the linear approximation, can actually
be evaluated at z = 0. We can now combine these two equations into a single
one for φ for instance, as

∂2φ

∂t2
= −g ∂φ

∂z
+
σ

ρ
∇2 ∂φ

∂z
on z = 0 (4.14)

We see from this expression that we can expect two limits, one where gravity
(first term on the RHS) dominates and the other where surface tension (second
term on the RHS) dominates. The former are called surface gravity waves and
the latter capillary waves.

The linear surface wave problem with constant depth is effectively a problem
in which one should solve Laplace’s equation in a plane-parallel domain, subject
to time- and spatially-dependent boundary conditions. To do so, note that by
separation of variables, and since the background is invariant in x, y and t (as
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long as σ and h are constant), we must have

φ(x, y, z, t) =

∫
dkx

∫
dkyφ̂(z;k)eikxx+ikyy−iωt (4.15)

where k = (kx, ky), and φ̂(z;k) satisfies

∂2φ̂

∂z2
− k2φ̂ = 0 for − h < z < 0 (4.16)

where k = |k| =
√
k2x + k2y, and φ̂ is subject to boundary conditions

−ω2φ̂ = −g dφ̂
dz

+
σ

ρ
∇2 dφ̂

dz
on z = 0 (4.17)

and
dφ̂

dz
= 0 on z = −h (4.18)

The equations for φ̂, together with the lower boundary condition gives

φ̂(z;k) = A(k) cosh (k(z + h)) (4.19)

where A is the amplitude of the mode with wavenumber k. For large hk (that
is, for deep water), then cosh(k(z+h)) ' ek(z+h) near the surface (near z = 0),
so cosh(k(z + h)) ' ek(z+h) = ekhekz. This shows that all the components of
the wave velocity decay more-or-less exponentially on a lengthscale 1/k below
the surface. For waves whose wavelength is short compared with the depth of
the water column, the fluid motion is very shallow – hence the name surface
waves. For waves whose wavelength is commensurate or large compared with
h, then the fluid motion spans the entire water column.

Finally, once φ is known, note that we can also write

η(x, y, t) =

∫
dkx

∫
dky η̂(k)eikxx+ikyy−iωt (4.20)

where η̂ is related to φ̂ via the boundary condition at z = 0, which becomes

−iωη̂ =
dφ̂

dz

∣∣∣∣∣
z=0

= A(k)k sinh(kh) (4.21)

so the wave amplitude is

η̂(k) =
dφ̂

dz

∣∣∣∣∣
z=0

= iA(k)
k sinh(kh)

ω
(4.22)

Plugging this back, we can finally obtain the actual surface wave displacement
η(x, y, t).
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Example: Suppose we only consider 2D waves, with ky = 0. We also non-
dimensionalize the system so h = 1 (in which case kx is expressed in units of
1/h). Finally, since the amplitude of the wave is arbitrary, we just pick A = 1
(this selects its amplitude, and its phase in x). Then, we have that

φ(x, z, t) = <
[
A(k) cosh (k(z + h)) eik·x−iωt

]
= cosh (k(z + 1)) cos(kx− ωt)

η(x, t) = <
[
iA(k)

k sinh(kh)

ω
eik·x−iωt

]
= −k sinh(k)

ω
sin(kx− ωt) (4.23)

where ω depends on k through the dispersion relation. The structure of the
solution at time t = 0 (and multiples of the wave’s period) is shown in Figure
4.2.
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Figure 4.2: Functions η(x, t) and φ(x, z, t) at t = 0 for h = 1, k = 3 and A = 1.
Note how the peaks and trophs of the waves are regions where φ is independent
of z which means that uz = 0 (see the vertical black lines). Regions where η = 0,
by contrast, are regions with the largest |uz| and ux = 0. The corresponding
motion is shown in the diagram, and takes the form of ellipses.
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Particle paths

As a wave passes by, the surface of the water moves up and down, but as we all
know from swimming in the ocean, a body lying in the water moves horizontally
as well. To study the particle paths, we apply the same method we did in the
case of internal gravity waves. Let’s define xe(t) = (xe(t), ze(t)) to be the
position of a fluid element as a function of time. We have

dxe
dt

= u =
∂φ

∂x
and

dze
dt

= w =
∂φ

∂z
(4.24)

For a specific linear mode given by (4.19), and assuming for instance that A is
real, we have

dxe
dt

= kxA cosh (k(ze + h))<(ieikxxe+ikyye−iωt)

= −kxA cosh (k(ze + h)) sin(k · xe − ωt)
(4.25)

and

dze
dt

= Ak sinh (k(ze + h))<(eikxxe+ikyye−iωt)

= Ak sinh (k(ze + h)) cos(k · xe − ωt) (4.26)

Solving this equation in general is fairly hard. However, assuming that the
displacement around an average position (x0, y0) is not too large – that is,
assuming xe(t) = x0 + ξ(t), and ze(t) = z0 + ζ(t) where ξ and ζ are small, then

dξ

dt
' −kxA cosh (k(z0 + h)) sin(k · x0 − ωt) +O(ξ, ζ)

dζ

dt
= Ak sinh (k(z0 + h)) cos(k · x0 − ωt) +O(ξ, ζ) (4.27)

This can easily be integrated with time to give

ξ(t) ' ξ0 −
kx
ω
A cosh (k(z0 + h)) cos(k · x0 − ωt)

ζ(t) = ζ0 −
Ak

ω
sinh (k(z0 + h)) sin(k · x0 − ωt) (4.28)

This time we see that the particle paths are ellipses. In other words, a wave
passing by causes a particle to move around in a vertically aligned ellipse, but
does not cause any net displacement. This is illustrated in Figure 4.3. That
is, at linear order. Nonlinear effects do cause a net displacement, called Stokes
drift. The Stokes drift being strongly dependent on the amplitude of the wave,
it is much larger near the surface than at the bottom.
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Figure 4.3: Photos of particle paths taken with long exposure, from Wiegel
& Johnson (1950). Particles under the surface of the water undergo elliptic
motions as the surface wave passes by.

Dispersion relation

The dispersion relation for the surface waves comes from applying the surface
boundary condition (4.17) to (4.19) :

−ω2 cosh(hk) = −gk sinh(hk)− σ

ρ
k3 sinh(hk) (4.29)

which implies that

ω2 = k tanh(hk)

(
g +

σ

ρ
k2
)

(4.30)

This is the general dispersion relation for surface waves. As usual, we have more
than one branch of solution:

ω(k) = Ω±(k) = ±

√
k tanh(hk)

(
g +

σ

ρ
k2
)

(4.31)

Note how the waves are isotropic along the surface, in the sense that they do
not have a preferred direction: ω only depends on the magnitude of k, rather
than on kx and ky separately. However, these waves are clearly dispersive. The
dispersive effects are, this time, quite different from those of internal gravity
waves (which caused the group speed and the phase speed to be perpendicular
to one another). They will be studied in more detail below.

Capillary waves vs. Gravity waves

We can see that the dispersion relation has two asymptotic limits depending on
the size of k:
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• if k �
√
gρ/σ (short waves)

Ω±(k) ' ±k
√
k tanh(hk)

σ

ρ
(4.32)

• if k �
√
gρ/σ (long waves)

Ω±(k) ' ±k
√

tanh(hk)

kh
gh (4.33)

The first limit describes waves that are dominated by the effects of surface
tension, the capillary waves, and the second limit describes waves that are dom-
inated by the effect of gravity, the surface gravity waves. We see that the
nature of the wave depends only on their wavelength in comparison with the
critical value 2π

√
σ/ρg. For properties typical of water on Earth, σ ' 70N/m,

g = 10m/s2 and ρ = 1000kg/m3, so this critical wavelength is about 0.5 meters,
or 50 cm. So any waves whose wavelength is significantly smaller than this is
dominated by surface tension, and any wave whose wavelength is significantly
larger is dominated by gravity.

When speaking about gravity waves, we sometimes take the further limit of
letting kh� 1, or in other words, to consider waves whose wavelength is large
compared with the depth of a layer. This limit is relevant for instance for long-
wavelength ocean waves in shallow waters, or even for very-long wavelength (>
few km) waves anywhere (since the ocean floor is typically only a few km deep).
In that case,

Ω±(k) ' ±k
√
gh (4.34)

In that limit, the waves become non-dispersive.
Similarly, when speaking of capillary waves, one often takes the further limit

of letting kh� 1, or in other words, having waves whose horizontal wavelength
is much smaller than the depth of the layer considered. That’s often the case
when we observe capillary waves on the surface of a quiet pond when we are
swimming, or tiny ripples generated by water-walking insects. In this more
restricted limit, we have

Ω±(k) ' ±k
√
k
σ

ρ
(4.35)

In that case the waves remain dispersive.

Phase speed vs. group speed

In general, the phase speed of surface waves is given by

cp =
ω

k
=

√
tanh(hk)

k

(
g +

σ

ρ
k2
)

(4.36)

so

cp√
gh

=

√
tanh(k̂)

k̂

(
1 +

σ

gρ
k̂2
)

(4.37)
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where k̂ = hk is the non-dimensional horizontal wavenumber. The right-hand
side tends to 1 for for very small k̂ so cp tends to

√
gh in this limit. Meanwhile

cp tends to
√
kσ/ρ for very large k̂. We therefore see that that phase speed of

long surface gravity wave is independent of their wavelength, as for sound waves,
but this is not true for capillary waves: longer wavelengths waves travel slower
than the shorter wavelengths one, so little ripples in the water travel ahead of
the bigger ones.

Note that since the dispersion relation is isotropic, that is, since it only
depends on the magnitude of k and not on kx or ky explicitly, then the group
speed is in the same direction as k. To see this, note that

cg =

(
∂ω

∂kx
,
∂ω

∂ky

)
=
∂ω

∂k

(
∂k

∂kx
,
∂k

∂ky

)
=
∂ω

∂k

k

k
(4.38)

This statement is quite general, and applies to any waves whose dispersion
relation is independent of the direction of k.

The group speed amplitude is then

cg =
∂ω

∂k
=

∂

∂k

√
k tanh(hk)

(
g +

σ

ρ
k2
)

=
tanh(hk)

(
g + 3σρ k

2
)

+ hk
(
g + σ

ρ k
2
)

1
cosh2(hk)

2

√
k tanh(hk)

(
g + σ

ρ k
2
)

cg√
gh

=
tanh(k̂)

(
1 + 3 σ

gh2ρ k̂
2
)

+
(

1 + σ
gh2ρ k̂

2
)

k̂
cosh2(k̂)

2

√
k̂ tanh(k̂)

(
1 + σ

gh2ρ k̂
2
) (4.39)

In the limit k̂ → 0 (long waves), the right-hand-side tends to one so we have
cg →

√
gh which is also their phase speed. This is not surprising since the

waves are non-dispersive in that limit. In the case of k → ∞, we have cg →
(3/2)

√
σk/ρ.

The two speeds, and their respective limits are shown in the Figure. We see
that cp > cg for surface gravity waves, while cp < cg for capillary waves. This
means that the wave crests seem to travel faster than the group for long surface
gravity waves, but slower than the group for short capillary waves. Both wave
speeds have minima for particular values of kh, although these minima are not
at the same position.
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Figure 4.4: Illustrations of the phase and group speeds, for σ
gh2ρ = 0.1.


