Chapter 1

The governing equations of
fluid dynamics

In this series of lectures we will study waves and instabilities in fluid flows, with
particular applications to geophysical and astrophysical systems, and paying
particular attention to the various mathematical methods that can be used to
characterize their properties. The course will be divided into two distinct parts,
the first 5 weeks being dedicated to the study of waves, and the next 5 weeks
to the study of instabilities. In the time available, it will not be possible to
be comprehensive. However, we will study a few representative examples of
waves and instabilities, and learn various tools to analyze them. The goal of the
course is to give you enough background in the field to make you comfortable
approaching any new problem you may encounter in the course of your future
research.

In this first Chapter, we will briefly discuss the governing equations of fluid
dynamics, their derivation and their meaning. For an excellent introduction to
this topic, see the book by Rick Salmon, “Lectures on Geophysical Fluid Dy-
namics”, Chapter 1.

The equations of fluid dynamics were first derived by Navier and Stokes in
the early-to-mid 1800s. This taking place long before atoms and molecules
were discovered, fluids were viewed as a continuum, and modeled as a collec-
tion of adjacent macroscopic “fluid elements” that are governed by Newton’s
laws. These elements are subject to various forces (gravity, viscous friction,
etc.) that control their motion, and must satisfy appropriate conservation laws
(mass, momentum, energy, etc..).

In the late 1800s/early 1900s, however, the discovery of the atom revealed
the true nature of a fluid to be a vast collection of interacting atoms, ions and
electrons, or molecules. Each of these particles is subject to its own equation
of motion, governed by body forces such as gravity, but also by local electro-
static forces induced by nearby particles, collisions, etc. The equations of fluid
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dynamics were then re-derived by considering statistical averages of the equa-
tions that govern the motion of each individual particle within the fluid. The
Navier-Stokes equations can be recovered in some limits, but this approach is
more general and can be used to model more “exotic” fluids such as relativistic
and/or strongly magnetized plasmas.

These two approaches, macroscopic and microscopic, are still in use today,
each preferred over the other depending on the application of interest. The latter
yields a set of equations that are mathematically exact, but involve progressively
higher statistical moments of the equations that can only be modeled using
additional theories or assumptions concerning the molecular interactions. The
former is not exact (and requires assumptions about the mathematical form
of some of the material forces within the fluid), but its interpretation strongly
benefits from its origin in standard Newtonian mechanics. In what follows, we
will only consider the traditional “macroscopic” approach to the derivation of
the fluid equations.

1.1 Mass conservation, Eulerian and Lagrangian
descriptions of a fluid

1.1.1 Eulerian description

In what follows, we consider the fluid as a continuum. At each point in space
(z,y,2) or time (t), it can be characterized by its velocity field, the 3D vec-
tor u(z,y, 2,t), and its thermodynamical properties: its density p(z,y, z,t), its
pressure p(z,y, z,t), etc... This is called the Fulerian description of the fluid.
In many cases, the Eulerian description of the fluid yields a simple, easy-to-
understand view of the motion of the fluid.

Examples: Consider the following 2D vector field:

2
’U,(I’,y,t) = UO exp <y2> €x (11)

This corresponds to a jet that flows in the z-direction, and has a velocity that
varies in y but is independent of « and ¢. The flow field

U (v — 2t)?
u(z,y,t) = 7%exp (_215> ey (1.2)

corresponds to another jet, in the y direction this time, whose width and position
both increase with time, but whose amplitude decreases.
Similarly, the density field

p(x,y,t) = po(1 + esin(z) cos(y)) (1.3)

corresponds to a spatially periodic modulation that is independent of time, while

p(,y,1) = pol1 + e exp(—t/7) sin(x) cos(y)) (1.4)
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corresponds to the same modulation, but this time the amplitude decays with
time.

In other words, the Eulerian description is useful and intuitive for anyone with
experience in visualizing 2D or 3D functions or vector fields. However, it is not
necessarily the simplest one in terms of the derivation and interpretation of the
equations of fluid dynamics. To see this, let us first study mass conservation.

1.1.2 Mass conservation

The notion of mass conservation is quite simple. It states that, in a given region
of space D (that is fixed and independent of time), the amount of mass in that
region can only change if mass is brought in, or taken out of it. This can be
expressed mathematically as

9 - 2
g /Dp(w,t)d?’:c =— /aD plz, t)u(z,t) - n(x)d x (1.5)

where the first term is the change in the total mass inside the domain D and the
second term is the integral over the surface of D of the component of the mass
flux (p(z, t)u(x,t)) normal to the surface. Since the unit normal to the surface
7 is defined outward, —p(x, t)u(x,t) - n(x) is positive if material is going into
D and negative if material is going out of D.

Using the divergence theorem and using the fact that D is independent of
time, we can rewrite this as

9 3, _ 3
/D ap(m,t)d T = —/DV (p(z, t)u(zx,t))d’x (1.6)

Since this has to hold for any domain D, one can take the limit where the volume
of D tends to 0, and obtain the local conservation law

ap B
E-FV- (pu) =0 (L.7)

which must be valid at every point in space or time. This is the mass conser-
vation equation, and is, as written, expressed in Eulerian coordinates.

1.1.3 Properties of mass conservation: advection vs. com-
pression/expansion

Let’s consider a 1D version of the mass conservation equation. In this case, both
p and the 1D velocity field u are functions of x and ¢ only. We then have

op 0 dp dp ou
Separating the second term into two parts reveals two contributions to any

change in p: one that corresponds to advection, and one that corresponds to
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the effect of compression or expansion. To see this, we now consider both in turn.

Let’s first consider a “divergence-free” (V - u = 0) velocity field uw, which in
1D simply means that Ou/Ox = 0. This corresponds to a homogeneous flow
u(z,t) = up(t). For simplicity, let’s just choose a constant ug although the fol-
lowing argument can be generalized to arbitrary ug(¢). The mass conservation
equation then becomes

ap dp
5 tuog =0 (1.9)

In this particular example, the solution is very simple and takes the form

p(x,t) = po(x — ugt) (1.10)

where po(z) = p(z,0) is the initial density distribution. In other words, the
density field is merely moved at constant velocity left or right (according to the
sign of ug), without change of form. This statement can easily be generalized if
ug is a function of time, or even in higher dimensions.

An equivalent way of looking at this problem is to consider that, at time
t = 0, the x—axis is discretized into a set of small elements of size dx, each of
which contains a total mass p(x,0)dz. Let’s focus for instance on a given fluid
element initially located at * = xg. If it is moving at the constant velocity uy,
then at a later time ¢ it can be found at the position z.(t) = z¢ + upt. Given
(1.10), we can then ask what the density of the fluid following a moving element
is. This is given by

ple(),t) = polwe(t) — uot) = polo) (L11)

In other words, we find that the parcel moves around without any change in
its density, or in other words, that the mass of that fluid element is conserved
along its path. This is a general property of divergence-free flow fields, that can
be generalized to more than 1 dimension, and to cases where w is not constant.

1.1.4 Lagrangian description of a fluid in 1D

Noting this, it is clear that there must be a simpler way of rewriting the equation
for mass conservation that emphasizes this property. And indeed, there is — as
long as one rewrites it in a coordinate system that follows the fluid element
along its trajectory! This idea is called the Lagrangian view of a system, and is
quite general. First note that creating a coordinate system is merely creating
labels. In a Eulerian coordinate system, each element is labeled by time and
by its current position. There is nothing to stop us, however, labeling a fluid
element by time and by its initial position instead. To go from one coordinate
system to the other, that is, from (z,t) to (zo,7), we use the transformation
t =7 and © = z.(t) = zo + up7. The advantage of the new coordinate system
is that, as long as x is held constant, we are always considering the same fluid
element. Hence the partial derivative with respect to 7 (holding zy constant)
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is exactly the derivative along a trajectory that we were interested in deriving.
Using the coordinate transformations above we get
dp Otdp 0Oxdp Op ap
or Orot Orodx Ot Ox
In other words, mass conservation written in a Lagrangian coordinate system,
for a divergence-free flow field, simply becomes

=0 (1.12)

% _
or

which expresses the fact that the density p of a given fluid element is indepen-
dent of time along its trajectory, as discussed earlier. For anyone with experience
with the method of characteristics, it is clear that switching to a Lagrangian ap-
proach in this example is completely equivalent to working along a characteristic.

0 (1.13)

Let’s now go back to the original mass conservation equation and consider a
general velocity field u(x,t) that is not necessarily divergence free. The solution
p(x,t) is no longer as simple, although can in principle be obtained using the
method of characteristics (cf. AMS212A) if required. The interpretation of the
equation is also rather obscure, when viewed in an Eulerian frame of reference,
that is, at fixed  and ¢t. However, it turns out that we can gain insight into
the problem by looking at it, as we did earlier, from a reference frame that is
moving with the fluid elements.

Let’s move again into the coordinate system (xg,7). This time, we can’t
necessarily write down a simple expression for = as a function of xy and ¢ as we
did before, since u could be a function of both z and ¢ instead of being constant.
However, we can still calculate the current position of an element that started
at zo by integrating the equation dz./dt = u as

ze(t) = 2o —i—/o u(xe(t"), t")dt’ (1.14)

and consider the new coordinate system (zg,7) such that 7 =t and z = z.(7).
The derivative of p along a trajectory then becomes

dp  Otdp  dxdp dp 9 du

ar FulT g, = g

or —or ot ordr ot (1.15)

This implies that if u increases with z, the fluid element’s density must
decrease with time, while when u decreases with z, the fluid element’s density
increases. To understand physically why this is the case, simply note that if u
is positive, and increases with z, fluid elements progressively move away from
each other as time goes by — the fluid expands. Meanwhile, if u is positive, and
decreases with x, fluid elements move closer to one another, and the fluid is
compressed. Similar statements can be made if u is negative. We then see that
the expansion or compression of a fluid element results in a change of density,
as expected.
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To summarize, we can see that while the Eulerian description is useful to
visualize the flow, the expression of the mass conservation law is simpler and
physically more intuitive when expressed in Lagrangian coordinates.

1.1.5 Lagrangian description of a fluid in 3D

The concept of Lagrangian coordinates in 3D can be easily be generalized from
the 1D case. Using exactly the same notations as before, each fluid element is
labeled in the Lagrangian coordinate system according to their original position
(20,90, 20) at t = 0. The elements moves around following the 3D velocity field
u, and end up at the position (z.(t), ye(t), z.(t)) at time ¢t. The functions z.(t),
Ye(t) and z.(t) are, as in the 1D case, time-integrals of the velocity field, and
conversedly, we have that w = (0z./0t, dy./0t, 0z./Ot). Hence the derivative
of any function following the fluid element is given by

of _9f , 0xof [ 9yof  0z=0f _9f

ar ~ ot Toror Toray Tora: o T4V (1.16)

The mass conservation, for instance, can be written as

o _op

_9p _
5= T U Vo= 4V (pu) = pVou=—pV (1.17)

ot
In other words, the density of a fluid element can only change as it moves around
when the flow field has a non-zero divergence. A positive divergence means that
the flow expands, and the density decreases, while a negative divergence implies
compression, and the density increases.

In all that follows, we will use the more conventional notation for the deriva-
tive of a quantity following the fluid to be Df/Dt = 9f/0t + u - Vf. Mass
conservation then becomes

L _pVou (1.18)

1.2 Momentum conservation

Newton’s second law states that the mass times the acceleration of any massive
object is equal to the sum of all forces applied to it. Applying this to a fluid
element we first need to define its acceleration. This is given by the time-
derivative of its velocity following the fluid element, so Newton’s law becomes

Du
— F; 1.19
ZADY (1.19)

The various forces acting on the fluid depend on the situation considered
but always include, at the very least, the effect of pressure gradients and viscous
friction, expressed as

u
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where p is the pressure, and II is the viscous stress tensor. In Cartesian coor-
dinates, the latter is given by

Ou; a“j> (1.21)

2
Hi' = —_ = (51 .
& (K 3”) jv u+'u <8$J + 8302

where 1 and k are two scalars that depend on the microscopic properties of the
fluid. It can also be written, in more general vector form, as

II= (/s - §M> (V-w)I+p(Vu+ (Vu)') (1.22)

where I is the identity matrix. Other common possible forces include buoyancy
(gravity) and Lorentz (magnetic) forces for instance.

1.3 The equation of state

The following sections are adapted from the book “Fluid Mechanics” by Kundu
and Cohen.

So far, we have two equations (the momentum equation and the mass con-
servation equation) for three unknowns (counting the momentum equation as 1
equation, and the whole vector field as 1 unknown): p, p and u. We are clearly
still missing some information to fully characterize the behavior of the fluid. To
relate pressure and density, one needs to appeal to the field of thermodynamics.

Thermodynamics was developed in the 1800s to study the macroscopic prop-
erties of liquids or gases. A uniform fluid! in a container of volume V, at temper-
ature T, has a pressure p and a density p. These quantities are not independent,
however. When mass is conserved, p = M/V where M is the total mass of ma-
terial inside of V. But we also know from everyday observations that pressure
increases when a gas is heated at constant volume (that’s what happens in a
pressure cooker), or when the volume decreases at constant temperature (that’s
what happens in a piston). So p, p and T must be related to one another — the
question is How?.

The relationship between thermodynamical variables is called “the equation
of state”. There are many equations of state for a given fluid, but they are all
equivalent: they can be written as p = p(p,T) or p = p(T,p), but they can
also involve other thermodynamic properties of the fluid, such as its internal
energy, its entropy, etc... An important property of thermodynamics, however,
is that the complete state of a fluid can be fully described by knowing only two
of these variables (for a single-component fluid), hence an equation of state is
always of the form X = f(Y,Z). The equation of state can be viewed as the
third equation of fluid dynamics next to momentum and mass conservation.

Hn all this course, we will usually use the terminology fluid to describe either a liquid or
a gas — both being adequately described by the equations of fluid dynamics. However, the
thermodynamics of liquids and gases are quite different, so in this section they will be referred
to specifically by their nature when relevant.



8 CHAPTER 1. THE GOVERNING EQUATIONS OF FLUID DYNAMICS

For gases, a well-known equation of state is that of a perfect gas:
p=RpT (1.23)

where R is a constant that is specific to each gas (called “the gas constant”).
The value of R depends on the molecular mass of the gas m according to

R= p (1.24)
where R, is the universal gas constant, and m in this equation is the molecular
mass of the gas (i.e. the total mass of exactly 1 mole of gas). This equation
is derived from the kinetic theory of gases assuming that electrostatic forces
between the particles are negligible. Other equations of state exist when these
forces become important (notably the Van der Waals equation of state). In
this course, we will always assume that a gas can be described by a perfect gas
equation of state, however.

The equation of state of liquids, by contrast, is usually very complicated
(even though it only depends on two variables), and difficult to construct from
first principles because the properties of liquids depend sensitively on intramolec-
ular forces. Generally, however, the equation of state takes the approximate
form

p=p(T) (1.25)

which is independent of pressure — liquids are, to a great degree of approxima-
tion, incompressible so the pressure does not play any role in the equation of
state.

In both cases, for gases and liquids, we see that the equation of state de-
pends explicitly on the temperature 7. This means that, except in very special
circumstances, we will need to introduce a fourth equation for the evolution of
temperature. This final equation can be derived from the conservation of total
energy, which also depends on the thermodynamics of the fluid. In the interest
of time, we will not be deriving it here from “first principles”, but merely state
it and discuss its consequences. For more detail, see Kundu & Cohen.

1.4 The conservation of thermal energy

The thermal energy conservation equation can in all generality be written as

p%Z—pV-u—V-HQﬂb (1.26)
where e is the internal energy of the gas/fluid, @ is the net local heating/cooling
term (that could come from local nuclear reactions in a star, or from radiative
cooling in an optically thin atmosphere), q is the local heat flux and ¢ is the
energy dissipation rate due to viscosity. This equation can be derived from the
First Law of Thermodynamics and from the mechanical energy conservation
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equation (which comes from dotting the momentum equation with w). To in-
terpret it, note that e measures the energy stored in the microscopic motion of
the particles, that is, their rms kinetic energy plus any energy coming from the
vibrations or rotation of molecules (if we are thinking of a liquid or a molecular
gas). Any change in e can only be due to effects that change these microscopic
motions: this includes heating or cooling (either direct heating from @ and ¢,
or from the convergence of the heat flux), or by compression (which forces the
components of the gas closer to one another and therefore affects their collisions,
kinetic energy or interactions).
For a perfect gas, there is a very simple relation between e and T"

e=c¢T (1.27)

where ¢, is a constant called the specific heat at constant volume that only
depends on the nature of the constituents of the gas. In that case, the thermal
energy equation becomes

T

Aslo, note that except in particular circumstances we have that

pCy

e The viscous dissipation is negligible (except when shocks are present), so
¢ can be ignored

e The heat flux is usually proportional to the local temperature gradient via
Hook’s Law:
q=—-kVT (1.29)

where k is called the “thermal conductivity”, unless the medium is very
optically thin, or a strongly magnetized plasma.

In these cases, the thermal energy equation for gases simply becomes

DT
peopr = —pV-u+ V- (kVT) (1.30)
This equation turns out to hold also for liquids under the same two assump-
tions, because they satisfy De/Dt = ¢, DT /Dt although in that case ¢, is not
necessarily constant. In addition, the term —pV - w drops out since liquids are
incompressible. In that case we have
DT

1.5 Entropy and adiabaticity

Another thermodynamic variable is the specific entropy s, defined through the
Second Law of Thermodynamics. It is related to the internal energy and other

variables via D D D
e s pLDp
— =T — 4+ = — 1.32
Dt Dt + p? Dt ( )
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Plugging (1.18) and (1.26) into this equation, we get

P R Vo S (1.33)
Dt
This implies that entropy changes whenever heat is added or removed from the
system — via any of the following processes: convergence or divergence of heat
flux, local heat source/sink and viscous dissipation. This equation is often used
as an alternative to the thermal energy equation.
Note how entropy is conserved in any system where there is no heat exchange.
Such systems are called adiabatic, and satisfy:

Ds
— =0 1.34
Dt ( )
For a perfect gas, it can be shown via kinetic theory or thermodynamics that
adiabaticity implies
p=f(s)p" (1.35)

where f(s) is some function of the specific entropy (which usually doesn’t need
to be specified), and «y is called the adiabatic index. Hence an alternative way
of stating the conservation of entropy is

Dp  pDp
— === 1.36
Dt~ Dt (1.36)
This also implies that
3p) p
=) =~% =~RT 1.37
<f‘3p s P (1.37)

This quantity will shortly be revealed to be the square of the speed of sound if
sound waves are assumed to propagate adiabatically.
For liquids, adiabaticity simply implies that

DT

— =0 1.38

iy (1.38)
which can also be written as

Dr_y (1.39)

Dt '

using the equation of state. Note that this final equation is consistent with mass
conservation, and the fact that V - u = 0, so for adiabatic liquids the thermal
energy equation is redundant.



