Homework 6

February 22, 2018

Do problem 1, and then either problem 2 or problem 3.

1 Local analysis for convection

Redo the local stability analysis for homogeneous convection we did in class, but this time add the dissipation terms we neglected: the viscous dissipation term in the momentum equation, and the thermal dissipation term in the temperature equation. What changes and what stays the same? Is λ still independent of $|k|$? What do the fastest-growing modes look like? You may assume that the system is 2D. It is not necessary, but will make your calculation easier.

2 Rayleigh Bénard convection with rotation (option 1)

This is a hard problem. See, e.g. Hydrodynamic Stability by Chandrasekhar if you need help.
Consider the Rayleigh-Bénard problem we studied in class (i.e. convection between bounded plates), with exactly the same setup. This question guides you towards finding a criterion for linear instability in the presence of rotation, when the rotation axis is in the same direction as gravity.

In the presence of rotation, oriented as in $\boldsymbol{\Omega}=(0,0, \Omega)$, the governing equations become

$$
\begin{align*}
& \nabla \cdot \boldsymbol{u}=0 \\
& \rho_{m}\left(\frac{\partial \boldsymbol{u}}{\partial t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}+2 \boldsymbol{\Omega} \times \boldsymbol{u}\right)=-\nabla p+\rho \boldsymbol{g}+\rho_{m} \nu \nabla^{2} \boldsymbol{u} \\
& \frac{\partial T}{\partial t}+\boldsymbol{u} \cdot \nabla T=\kappa_{T} \nabla^{2} T \\
& \frac{\rho}{\rho_{m}}=-\alpha T \tag{1}
\end{align*}
$$

Question 1: Show that there exists a steady state with no fluid motions in which $\bar{T}(z)=T_{m}-z \Delta T / H$.
Question 2: Non-dimensionalize the equations exactly as in Section 5.2.6 of the notes. Show that an additional parameter $E=\frac{2 \Omega H^{2}}{\kappa_{T}}$ appears in the presence of rotation.

Question 3: Assume 3D perturbations and write $T(x, y, z, t)=\bar{T}(z)+\tilde{T}(x, y, z, t)$. What system of equations do the perturbations satisfy? Linearize this system.

Question 4: Assume an ansatz of the form $q(x, y, z, t)=\hat{q}(z) e^{i l x+i k y+\lambda t}$ for the modes, and substitute it into the equations. Show that the resulting equation for, say, $\hat{T}(z)$, is

$$
\begin{equation*}
(\lambda-\operatorname{Pr} D)^{2}(\lambda-D) D \hat{T}+(\lambda-\operatorname{Pr} D)\left(l^{2}+k^{2}\right) \operatorname{RaPr} \hat{T}+E^{2}(\lambda-D) \frac{d^{2} \hat{T}}{d z^{2}}=0 \tag{2}
\end{equation*}
$$

where D is an operator defined as $D \equiv \frac{d^{2}}{d z^{2}}-\left(k^{2}+l^{2}\right)$.
Question 5: Check that when $E=0$ you recover the same equation as we had in the non-rotating case. Also check that modes with $\hat{T}(z)=\sin (n \pi z)$ are solutions of the equation. What equation does this imply for λ ?

Question 6: Set $\lambda=0$, and thus determine the critical value of needed for the onset of convection, as a function of n, k, l, and E. How does it differ from the non-rotating case? Does rotation inhibit or promote convection?

3 Double-diffusive convection (option 2)

This is also a hard problem. Students who study double-diffusive things with me are not allowed to pick this question. You know who you are.

Consider the following set of equations, which model homogeneous double-diffusive convection (ignoring the effects of boundaries). This is essentially the same as normal convection, except that there is a second scalar field C (for concentration of some solute) that contributes to the density.

$$
\begin{align*}
& \nabla \cdot \boldsymbol{u}=0 \\
& \rho_{m}\left(\frac{\partial \boldsymbol{u}}{\partial t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}\right)=-\nabla p+\rho \boldsymbol{g}+\rho_{m} \nu \nabla^{2} \boldsymbol{u} \\
& \frac{\partial T}{\partial t}+\boldsymbol{u} \cdot \nabla T=\kappa_{T} \nabla^{2} T \\
& \frac{\partial C}{\partial t}+\boldsymbol{u} \cdot \nabla C=\kappa_{C} \nabla^{2} C \\
& \frac{\rho}{\rho_{m}}=-\alpha T+\beta C \tag{3}
\end{align*}
$$

Question 1: Show that there exists a steady state with no fluid motions in which $\bar{T}(z)=T_{m}+z T_{0 z}$, and $\bar{C}(z)=C_{m}+z C_{0 z}$.

Question 2: In what follows, assume for simplicity that $T_{0 z}>0$ and $C_{0 z}>0$ (this selects the so-called fingering regime). Non-dimensionalize the equations using the unit length $[l]=d=\left(\frac{\kappa_{T} \nu}{\alpha g T_{0 z}}\right)^{1 / 4}$, the unit velocity $[u]=\kappa_{T} / d$, the unit time $t=d^{2} / \kappa_{T}$, the unit temperature $[T]=d T_{0 z}$ and the unit concentration
$[C]=(\alpha / \beta) d T_{0 z}$. (Ask me why this is a good choice in office hours if you are interested). Show that three interesting parameters pop up:

$$
\begin{equation*}
\operatorname{Pr}=\frac{\nu}{\kappa_{T}}, \quad \tau=\frac{\kappa_{C}}{\kappa_{T}}, \quad \text { and } R_{0}=\frac{\alpha T_{0 z}}{\beta C_{0 z}} \tag{4}
\end{equation*}
$$

Question 3: Assume 2D perturbations and write $T(x, z, t)=\bar{T}(z)+\tilde{T}(x, z, t)$ (and similarly for C). What system of equations do the perturbations satisfy? Linearize this system.

Question 4: Assume normal modes of the form $q(x, z, t)=\hat{q} e^{i l x+i k z+\lambda t}$, and substitute this ansatz into the equations. What equation does λ satisfy? It can be shown (though you do not have to do that!) that modes with $k=0$ grow the fastest. What equation does λ satisfy for these modes?

Question 5: Set $\lambda=0$ (in the equation for $k=0$ modes), and thus determine the critical value of R_{0} needed for the onset of fingering convection, as a function of l, and τ. Interpret your findings.

