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6.3.2 Examples of commonly-studied shear flows

Linear shear flows

As seen in the previous section, linear shear flows of the kind u = zex are not
expected to have any growing modes. Let’s see this more directly by solving
Rayleigh’s instability equation subject to the boundary conditions ŵ = 0 at
z = −1 and z = 1. Note how the velocity amplitude and domain height are now
both non-dimensional. The equation simply becomes:

(z − c)
(
d2ŵ

dz2
− k2xŵ

)
= 0 (6.1)

There are several possibilities:

• If c is real, and not in the interval [−1, 1], then this can be rewritten as

d2ŵ

dz2
= k2xŵ (6.2)

which has exponential solutions. However, these cannot be fitted to the
homogeneous boundary conditions so this case is ruled out entirely.

• If c is complex, that is, c = cR + icI where cI 6= 0, then (6.1) has a real
and imaginary part, which are respectively:

(z − cR)

(
d2ŵR

dz2
− k2xŵR

)
+ cI

(
d2ŵI

dz2
− k2xŵI

)
= 0

(z − cR)

(
d2ŵI

dz2
− k2xŵI

)
− cI

(
d2ŵR

dz2
− k2xŵR

)
= 0 (6.3)

where ŵ = ŵR + iŵI . These can be combined to get (for instance)[
(z − cR)2 + c2I

](d2ŵR

dz2
− k2xŵR

)
= 0 (6.4)

and similarly for ŵI . Since cI was by assumption non-zero, we end up
again with equation (6.2) whose exponential solutions cannot be fitted to
the boundary conditions. This has a very important implication: remem-
bering that λ = −ikxc, we can only get growing solutions if cI is non-zero
– but we just ruled this possibility out. Hence, as expected, we find that
there are no linearly unstable modes in linear shear flows.

• Finally, if c is real and lies within the interval [−1, 1], then for any selected
value of c, (6.1) is singular at the point ū(zs) = zs = c, and the derivative
must be discontinuous at zs. Solutions can be found by solving (6.1) on
both sides of zs, and matching them to one another at that point requiring
continuity of ŵ.

Solving (6.1) for z > zs, and applying ŵ = 0 at z = 1, we get

ŵ = w+ sinh(kx(z − 1)) (6.5)
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Similarly for z < zs:

ŵ = w− sinh(kx(z + 1)) (6.6)

Matching the two at z = c, we have

w+ sinh(kx(c− 1)) = w− sinh(kx(c+ 1)) (6.7)

This can be rewritten as

w+ =
w0

sinh(kx(c− 1))
and w− =

w0

sinh(kx(c+ 1))
(6.8)

where w0 is the total mode amplitude, which remains arbitrary since this
is a linear problem. So finally, for every value of c in the interval [−1, 1],
we get one eigenmode ŵ(z) as:

ŵ =
w0

sinh(kx(c− 1))
sinh(kx(z − 1)) for c ≤ z ≤ 1

ŵ =
w0

sinh(kx(c+ 1))
sinh(kx(z + 1)) for − 1 ≤ z ≤ c (6.9)

A particular mode for kx = 1, for c = −0.2 is shown in Figure 6.1. Note
how ŵ is continuous but its derivative isn’t. This implies, by the conti-
nuity equation, that the horizontal flow velocity u is discontinuous. Of
course, this can only happen in the non-viscous case (viscosity would oth-
erwise tend to smooth-out the discontinuity, thereby disallowing this kind
of solution). See more in the next section on the effect of viscosity on
linear shear flows.
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Figure 6.1: Vertical velocity profile for the neutral mode with kx = 1, for
c = −0.2
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To summarize these results, we have seen that, as discussed in the previous
section, a linear shear is linearly stable, but there is a continuum of neutral
modes where the real part of c lies in between the minimum and the maximum
of ū(z). With λ = −ikxc, the full solution for the vertical velocity is

w(x, z, t) = <
(
ŵ(z)eikx(x−ct)

)
(6.10)

where ŵ is given in equation (6.9). The neutral modes thus discovered are a form
of oscilation propagating in the x-direction at velocity c without change of form.
Note that ŵ has a kink in z, so by the continuity equation û(z) ∝ dŵ/dz must
have a discontinuity. Any discontinuity in a real shear flow should be worrying,
but here we can really attribute it to the fact that we ignored viscosity, and
neutral modes with a little viscosity do in general merely becomes stable ones.

The Bickley jet

There are not many continuous profiles ū(z) for which analytical solutions of
Rayleigh instability equation exist. In general, solutions and their corresponding
eigenvalues have to be computed numerically. In the following example, which
studies the Bickley jet, some of the solutions can be found analytically, and
some must be found numerically.

The Bickley jet is of the form

ū(z) = sech2(z)ex =
1

cosh2(z)
ex (6.11)

and is shown in Figure 6.2.
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Figure 6.2: Bickley jet
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The first and second derivatives are

ū′(z) = −2 tanh(z)ū(z)

ū′′(z) = −2 tanh(z)ū′(z)− 2sech2(z)ū(z) = 2(2− 3ū(z))ū(z) (6.12)

This has an inflection point at positions zi such that ū(zi) = 2/3 (which happens
at two positions, one below 0 and one above 0). We therefore expect, for each
value of kx, at most 2 pairs of complex-conjugate modes. As it turns out,
because of the symmetries of the jet, there are indeed 2 modes: one for which
ŵ is symmetric with respect to z (called the sinuous mode), and one for which
ŵ is antisymmetric with respect to z (called the varicose mode).

To find growing modes, one needs to solve Rayleigh’s instability equation
numerically. As before, we first isolate the real and imaginary parts of this
equation, to get:

(ū(z)− cR)

(
d2ŵR

dz2
− k2xŵR

)
+ cI

(
d2ŵI

dz2
− k2xŵI

)
− ŵRū

′′(z) = 0

(ū(z)− cR)

(
d2ŵI

dz2
− k2xŵI

)
− cI

(
d2ŵR

dz2
− k2xŵR

)
− ŵI ū

′′(z) = 0(6.13)

We then reshuffle them as

d2ŵR

dz2
− k2xŵR −

(ū(z)− cR)ŵR − cIŵI

(ū(z)− cR)2 + c2I
ū′′(z) = 0

d2ŵI

dz2
− k2xŵI −

cIŵR + (ū(z)− cR)ŵI

(ū(z)− cR)2 + c2I
ū′′(z) = 0 (6.14)

We then solve these equations numerically, using for instance a Newton-Raphson
two-point boundary value relaxation method. To find the sinuous and varicose
modes, we limit the domain to z > 0 and require that dŵ/dz = 0 at z = 0 for
the sinuous mode, and ŵ = 0 at z = 0 for the varicose mode. The figure below
shows cI as a function of kx for the sinuous mode. We see that growing modes
only exist for small enough kx (that is, kx < 2), and that there is a most rapidly
growing mode whose wavenumber is approximately kx = 0.1. For the varicose
mode, the maximum wavenumber that is unstable is kx = 1, and the growth
rate of the varicose modes are always smaller than those of the sinuous modes
(see Figure 6.3).

Interestingly, the marginal modes (that is, the modes for which cI is identi-
cally zero) can be found analytically. It’s easy to check that they have

kx = 2 , cR =
2

3
, ŵ = sech2(z) for the sinuous mode

kx = 1 , cR =
2

3
, ŵ = sech(z) tanh(z) for the varicose mode (6.15)

The fact that cR is equal to value of ū(z) at the inflection point, for these
marginal modes, is not a coincidence. It it the only real value of cR for which a
non-singular solution to Rayleigh’s equation can exist.
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Figure 6.3: Imaginary part of c (which is proportional to the growth rate λ) for
the sinuous and varicose modes.

Finally, note that in addition to the regular marginal and growing modes,
there is also a continuum of singular modes whose eigenvalue c is real, and
lies between 0 and 1. These can be found, as before, by seeking solutions on
either sides of the singular point, and matching them to one another, and to the
boundary conditions at infinity.

6.4 The viscous theory for shear instabilities

6.4.1 The background flow and the importance of viscos-
ity

In the previous Section, we studied inviscid shear flows. These turn out to
be somewhat peculiar in the sense that any profile ū(z) could be used for the
background shear. In reality, however, shear flows usually arise from a balance
between forcing and viscous dissipation, and there is a single background solu-
tion for a given forcing and a given set of boundary conditions. Indeed, if we
try to solve

ρm

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ρmν∇2u + F (z)ex (6.16)

(where we have arbitrarily chosen to take the force as acting in the x−direction),
then the only steady-state solution (assuming, say, periodic boundary conditions
in x) is such that

ρmν∇2ū + F (z)ex = 0 (6.17)

or in other words,

ū = ū(z)ex (6.18)
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where ū(z) satisfies
d2ū

dz2
= −F (z)

ρmν
(6.19)

The actual solution ū(z) will then depend on what is assumed in terms of the
boundary conditions in z. For a constant force F0, for instance, with no-slip
boundaries at z = 0 and z = 1 (so ū(0) = ū(1) = 0, we find that the solution is

ū(z) = − F0

ρmν

z(z − 1)

2
(6.20)

or, in other words, a parabolic profile (called a Poiseuille flow). Other forces
and other boundary conditions will similarly yield other background flow profiles
ū(z).

Since viscosity is key in selecting the background flow, it is often not a good
idea to neglect it. For this reason, we now proceed to analyze the stability of
shear flows in the presence of viscosity.

6.4.2 Linear stability

As in the case of inviscid shear flows, we now let u = ū+ ũ, and substitute this
into the momentum equation. We get

∂ũ

∂t
+ ū · ∇ũ + ũ · ∇ū = − 1

ρm
∇p̃+ ν∇2ũ (6.21)

With the same steps as in the case of inviscid flows, we arrive at

(λ+ikxū(z))

(
d2ŵ

dz2
− k2xŵ

)
−ikxŵ

d2ū

dz2
= ν

(
d2

dz2
− k2x

)(
d2ŵ

dz2
− k2xŵ

)
(6.22)

which can then be transformed into the Orr-Sommerfeld equation:

(ū(z)− c)Dŵ − ŵ d
2ū

dz2
= −i ν

kx
D2ŵ (6.23)

using, as before λ = −ikxc and where the operator D ≡ d2/dz2 − k2x
By contrast with Rayleigh’s equation, the Orr-Sommerfeld equation is al-

ways regular (for ν 6= 0), since the coefficient in front of the highest derivative
is never 0. It is therefore much easier to find solutions numerically. However,
the equation itself is of higher order and very rarely has any analytical solution.
Some theorems associated with properties of solutions of the Orr-Sommerfeld
equation are discussed by Drazin & Reid in the textbook Hydrodynamic Stabil-
ity. The most important set of results concerning the stability of viscous shear
flows are summarized in Chapter 4 (where they use the notation R ∝ 1/ν for
the Reynolds number, and α = kx). We see that

• In general, viscosity has a tendency to stabilize shear flows for very large
values of ν (small values of R). For instance, the range of unstable modes
for the Bickley jet (e.g. case (d)) is null below a critical value of R, and
then gradually increases to recover the inviscid range for large R.
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• This last statement is in fact true of all cases: for R → ∞, the inviscid
limit is indeed recovered (so it is not a singular limit of the equations).

• Interestingly, however, we also find that linear shear flows (which are lin-
early stable for all wavenumbers in the inviscid limit), can be unstable for
an intermediate range of values of the viscosity. This is a peculiar case
where viscosity can have a destabilizing effect on a system.

6.4.3 Energy stability for viscous linear shear flows

To finish this section on the stability of unstratified shear flows, we now look
again at the problem of energy stability, using the method discussed in the
context of convection. Let’s consider a domain of height Lz, and horizontal
size Lx, and assume for the moment that there is a linear background shear
flow ū(z) = Sez. We assume that all the perturbations to that background are
periodic in Lx and Lz. We now look at the energetics of perturbations ũ around
that state. The governing equations are :

∂ũ

∂x
+
∂w̃

∂z
= 0

∂ũ

∂t
+ ũ · ∇ũ+ Sz

∂ũ

∂x
+ Sw̃ = − 1

ρ0

∂p̃

∂x
+ ν∇2ũ

∂w̃

∂t
+ ũ · ∇w̃ + Sz

∂w̃

∂x
= − 1

ρ0

∂p̃

∂z
+ ν∇2w̃ (6.24)

Non-dimensionalizing the distances with respect to the vertical size Lz of the
domain, and the velocity in terms of SLz, we get the non-dimensional equations

∂u

∂x
+
∂w

∂z
= 0

∂u

∂t
+ u · ∇u+ z

∂u

∂x
+ w = −∂p̃

∂x
+

1

Re
∇2u

∂w

∂t
+ u · ∇w + z

∂w

∂x
= −∂p̃

∂z
+

1

Re
∇2w (6.25)

where everything is now implicitely non-dimensional variables and where

Re =
SL2

z

ν
(6.26)

is the Reynolds number of the flow. The Reynolds number is another very
famous number in fluid dynamics that measures the ratio of the inertial terms
(u · ∇u) to the viscous terms (ν∇2u). The larger the Reynolds number is, the
less important viscosity is. In the limit of very large Reynolds number, viscosity
should be negligible.

Using the usual trick of dotting the momentum equation with u, we get the
very simple energy equation

∂E

∂t
= −〈uw〉 − 1

Re
〈|∇u|2〉 ≡ H(u) (6.27)
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As in the case of convection, we then try to determine when energy stability
occurs, ie. when H(u) is negative for all possible divergence-free velocity fields.

We first maximize H(u) under the constraints that ∇ · u = 0 and the dissi-
pation functional D = D0. To do so, we create the functional

S = −〈uw〉+ Λ1〈
1

Re
|∇u|2 −D0〉+ 〈Λ2(x, z)∇ · u〉 (6.28)

with the two Lagrange multipliers Λ1 and Λ2(x, z). This defines the Lagrangian

L = −uw + Λ1(
1

Re
|∇u|2 −D0) + Λ2(x, z)∇ · u (6.29)

The Euler-Lagrange equations for this maximization process are:

−w =
∂Λ2

∂x
+ 2

Λ1

Re
∇2u

−u =
∂Λ2

∂z
+ 2

Λ1

Re
∇2w (6.30)

together with the two constraints. Eliminating Λ2 between the two equations,
we get

∂u

∂x
− ∂w

∂z
= 2

Λ1

Re
∇2

(
∂u

∂z
− ∂w

∂x

)
(6.31)

Since we are working in 2D we can use a streamfunction such that u = ∂φ/∂z
and w = −∂φ/∂x. The equation above becomes

2
∂2φ

∂x∂z
= 2

Λ1

Re
∇4φ (6.32)

Assuming solutions of the kind φ(x, z) ∼ exp(ikxx+ ikzz), this yields

Λ1 = −Re
kxkz

(k2x + k2z)2
(6.33)

Let’s now go back to the original energy equation, and calculate its right-hand-
side:

∂E

∂t
= −〈uw〉 − 1

Re
〈
(
∂u

∂x

)2

+

(
∂u

∂z

)2

+

(
∂w

∂x

)2

+

(
∂w

∂z

)2

〉

= 〈∂φ
∂x

∂φ

∂z
〉 − 1

Re
〈
(
∂2φ

∂x∂z

)2

+

(
∂2φ

∂z2

)2

+

(
∂2φ

∂x2

)2

+

(
∂2φ

∂z∂x

)2

〉

= −kxkz〈|φ|2〉 −
(k2x + k2z)2

Re
〈|φ|2〉

= − (k2x + k2z)2

Re
(1− Λ1)〈|φ|2〉 (6.34)

This implies that for the system to be energy-stable (dE/dt < 0), we simply need
Λ1 < 1 where k2x + k2y is not allowed to be identically 0 (otherwise dE/dt = 0).
Since we can rewrite Λ1 as

Λ1 = −Re
cos θ sin θ

k2
= −Re

2

sin 2θ

k2
(6.35)
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where k2 = k2x + k2z and cos θ = kx/k, then we see that Λ1 is maximum for
angles θ = −π/4 and θ − 3π/4, in which case sin(2θ) = −1, but continuously
decreases with increasing k2. Hence, the maximum value of Λ1 is for kx = ±kz,
and for the smallest non-zero available value of k that lies at these angles. This
implies

max Λ1 =
Re

2
max

kx=±ky

1

k2x + k2z
=

Re

4

1

min(k2x, k
2
z)

= Re max(L̂2
x, 1) (6.36)

where L̂x = Lx/Lz is the horizontal length of the domain in units of Lz. To
get to the last expression we have used the fact that the minimum wavenumber
in the z direction is 2π, while the minimum wavenumber in the x direction is
2π/L̂x. So, finally, the condition Λ1 < 1 for energy stability implies a condition
on the Reynolds number :

Re < ReE =
16π2

max(L2
x/L

2
z, 1)

(6.37)

This shows that large enough viscosity (low enough Reynolds number) can al-
ways stabilize a shear flow.

The implication of this result for a square periodic domain, for instance,
is that the maximum Reynolds number for stability1 of a linear shear flow is
ReE = 16π2 ' 158. For larger Reynolds numbers, we know that the flow is
linearly stable, but well-chosen finite amplitude instabilities can destabilize it.
The question of the optimal perturbations, i.e. for a given perturbation energy,
what is the shape of the perturbation that is unstable for the lowest possible
Reynolds number, is a subject of active research.

1This is another good way of testing the numerics of a doubly-periodic code : for any
Re < ReE the total energy of any initial perturbation should decay.


