
Chapter 6

Shear instabilities

In this final Chapter, we continue our study of the stability of fluid flows by
looking at another very common source of instability, shear. By definition,
shear occurs whenever two adjacent fluid parcels move in parallel directions,
but at different velocities. The shear is defined as the amplitude of the local
velocity gradient perpendicular to the motion.

Shear flows are ubiquitous in nature and can occur on any scale. Flows
pumped though pipes by some pressure gradient along the pipe (called Poiseuille
flows) are present everywhere in natural or engineered systems: blood flow
through the body, from small capillaries to arteries, fluid flow through under-
ground river systems, magma flows and pyroclastic flows through volcano chim-
neys, water flowing through a hose, a kitchen faucet, oil in a car engine, in a
pipeline, etc.. These are often subject to strong shear if the wall boundaries are
no-slip (so fluid is moving in the center of the pipe, but not on the sides. Shear
flows can also be driven by differential pressure gradients (or any other forces)
in open systems, and are found in the ocean, in the atmospheric wind patterns,
in the surface and subsurface flows of the Sun, giant planets, other stars, in the
orbital motion of gas in accretion disks, etc..

In this Chapter, we will apply some of the techniques learned in the context
of convection to shear instabilities, and we will also see some new techniques.
We will begin by looking at unstratified shear flows, and then move on to the
more complicated problem of stratified shear flows.

6.1 Energetics of shear instabilities

The reason why shear drives instabilities is most easily understood by consider-
ing the energetics of a sheared fluid. The technique introduced here is actually
widely applicable to many fluid instabilities, but it is worth bearing in mind
that it is not very rigorous (nor is it meant to be), by contrast with all the other
techniques introduced in the previous chapter.

Energetic considerations for the development of instabilities are based on
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the following idea: given a background fluid flow, is that background the low-
est possible energy state of the system, or can energy be extracted from the
background by mixing material around? If it can, then instabilities are indeed
energetically favorable because a perturbation can use the energy extracted from
the background to amplify itself, in a positive feedback loop. This idea is il-
lustrated below, for unstratified shear flows (see later for the case of stratified
shear flows.)

Consider a simple background fluid flow, with constant density ρ0, subject
to some shear. Without loss of generality, the shear can be modeled locally as

ū = ū(z)ex = ū(0) + Szex (6.1)

where S is the (constant) shearing rate, by moving into a suitable frame of
reference. This expression can, for instance, be viewed as a Taylor-expansion of
the actual shear flow near a certain point.

Consider two parcels of fluid, one at z = 0, and one at z = ε, where ε is
small enough for (6.1) to be a good representation of the local flow. The initial
total kinetic energy contained in the two parcels is

Ei =
ρ0
2
ū(0)2+

ρ0
2
ū(ε)2 =

ρ0
2
ū(0)2+

ρ0
2

(ū(0) + Sε)
2

= ρ0ū(0)2+ρ0ū(0)Sε+
ρ0
2
S2ε2

(6.2)
Meanwhile, the momentum of the lower parcel is ρ0ū(0) while that of the upper
parcel is ρ0ū(ε) = ρ0(ū(0) + Sε).

Next, suppose we switch the two parcels around, but in the process, mix
and equalize their momenta. If the total momentum remains conserved in the
process, then the momenta of each of the two switched parcels becomes ρ0(ū(0)+
Sε/2), and they are both moving at the average velocity ū(0) +Sε/2 (as shown
in Figure 6.1). The total kinetic energy of the switched parcels is then

Es = 2
ρ0
2

(ū(0) + Sε/2)
2

= ρ0ū(0)2 + 2ρ0ū(0)Sε+
ρ0
4
S2ε2 (6.3)
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Figure 6.1: The mixing even equalizes the momenta of the two parcels of fluid.

We see that the new background flow consisting of the switched parcels has
a lower energy than the original one. The difference

∆E = Ei − Es = ρ0S
2ε2/4 > 0 (6.4)



6.2. LOCAL LINEAR STABILITY ANALYSIS 145

is available to amplify initial perturbations and thus drive instabilities. This is
the main reason why shear instabilities are so common – the shear itself is a
reservoir of kinetic energy that can, under some circumstances, be tapped into
to drive instabilities.

6.2 Local linear stability analysis

As for the case of convection, we now attempt to perform a local stability
analysis of shear flows. We do not need to specify the origin of the background
shear ū (see 6.1), but merely assume it exists. We also assume for simplicity
that we are in the limit where the Boussinesq approximation is valid. If we let

u = ū + ũ (6.5)

then the perturbations evolve according to

∇ · ũ = 0
∂ũ

∂t
+ ū · ∇ũ + ũ · ∇ū = − 1

ρ0
∇p̃+ ν∇2ũ (6.6)

Once expanded into components (and assuming 2D flow, for instance), this
becomes
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(6.7)

We immediately detect a crucial problem: this equation does not have con-
stant coefficients, so the standard local analysis (which would have us use the
ansatz q̃ = q̂ exp(ikxx+ ikzz + λt) will not work. However, for the specific case
of linear shear flows, there is a nice trick we can play which involves moving
into a sheared reference frame. Indeed, let

x′ = x− Szt
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t′ = t (6.8)

then
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(6.9)
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so the new equations are
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In this new coordinate system, there is no spatially-dependent coefficient, so we
can indeed say that

ũ = û(t′) exp(ikxx
′ + ikzz

′) (6.11)

and similarly for the other variables. Then we have

ikxû+ i(kz − Skxt′)ŵ = 0

dû

dt′
+ Sŵ = − i

ρ0
kxp̂

dŵ

dt′
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ρ0
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Note, however, that if we wrote κz(t′) = kz − Skxt′ and κx = kx then

κxû+ κz(t′)ŵ = 0

dû
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dŵ
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Now these look like they have time-independent coefficients, but they really
don’t since κz depends on t′.

Substituting one equation into the other, we eventually get (remembering
that t′ = t)

dŵ

dt
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κz(t)

κx

[
−κz(t)

κx

dŵ

dt
+ 2Sŵ

]
(6.14)

which becomes the simple ODE for ŵ:[
1 +

κ2z(t)

κ2x

]
dŵ

dt
= 2S

κz(t)

κx
ŵ (6.15)

Since dκz/dt = −Skx, this can also be rewritten as

d

dt

[(
1 +

κ2z(t)

κ2x

)
ŵ

]
= 0 (6.16)

or, in other words,

ŵ(t) =
Cκ2x

κ2x + κ2z(t)
=

Ck2x
k2x + (kz − Skxt)2

(6.17)
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where C is an arbitrary integration constant. As t→∞, ŵ(t) always eventually
tends to 0, which shows that the linear shear is always stable!

This result appears to contradict our energetic argument, which suggested
that a non-viscous linear shear should be unstable. Is it really true? Or is it
another one of these cases where the local analysis is giving weird results? The
only way to find out is to abandon the local analysis and do the full problem in
a bounded domain.

6.3 Global analysis of unstratified plane parallel
flows

6.3.1 Linear stability analysis in the inviscid limit

We now consider a global model of fluid flow between two horizontal parallel
plates, located at z = 0 and z = H. The plates are impermeable, so w = 0
on each plate. For simplicity, we assume again that there is no viscosity. In
that case, we cannot apply any boundary conditions on u: the ones on w are
sufficient to fully constrain the problem.

Let’s first consider the background state. Interestingly, in the absence of
viscosity, any shear flow in the x-direction, whose profile depends only on z but
not on x or t (assuming a 2D system), is a solution of the steady-state momentum
equation and of the continuity equation. In other words, the background flow
ū = ū(z)ex satisfies

∂ū

∂t
+ ū · ∇ū = −∇p̄

∇ · ū = 0 (6.18)

as long as ∇p̄ = 0. Possible examples of such a background flow are shown in
Figure 6.2.

Using the usual trick of setting u = ū+ ũ, and similarly for p, we can easily
show that perturbations to this background flow satisfy

∂ũ
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∂z
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∂ũ
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∂ũ

∂x
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dū
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∂x
∂w̃
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+ ū(z)

∂w̃

∂x
= −∂p̃

∂z
(6.19)

The coefficients of this system of PDEs are independent of time and of x, so we
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Figure 6.2: Illustration of possible background shear flows in a non-viscous
system.

seek solutions of the form q̃(x, z, t) = q̂(z) exp(ikxx+ λt). We get

ikxû+
dŵ

dz
= 0

λû+ ikxū(z)û+ ŵ
dū

dz
= −ikxp̂

λŵ + ikxū(z)ŵ = −dp̂
dz

(6.20)

Eliminating p̂, we get

(λ+ ikxū(z))
dû

dz
+

(
ikxû+

dŵ
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)
dū

dz
+ ŵ

d2ū

dz2
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We then use the continuity equation to eliminate û, to get

(λ+ ikxū(z))

(
d2ŵ

dz2
− k2xŵ

)
− ikxŵ

d2ū

dz2
= 0 (6.22)

Finally, if we define a new variable c such that

λ = −ikxc (6.23)

then the vertical velocity perturbation must satisfy

(ū(z)− c)
(
d2ŵ

dz2
− k2xŵ

)
− ŵ d

2ū

dz2
= 0 (6.24)
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where c is the eigenvalue of the problem.
This equation is called the Rayleigh stability equation. It is an ODE which

needs to be solved for the function ŵ(z) and the eigenvalue c, subject to the
boundary conditions ŵ = 0 at the top and bottom of the domain. It usually
needs to be solved numerically, and is not a standard Sturm-Liouville eigenvalue
problem, so that most of the theorems we have learned about the latter do not
apply here. Nevertheless, there are still an interesting number of strict results
that can be derived from (6.24).

First, note that for any solution with kx > 0, there is another solution with
kx < 0 and c → −c. Without loss of generality, we can therefore take kx > 0.
Next, note that unstable modes for kx > 0 are characterized by c values that
have a positive imaginary part. Also it’s easy to show that since ŵ can be
complex, if ŵ is a solution then its complex conjugate ŵ∗ is also a solution
with eigenvalue c∗. To see this, simply take the complex conjugate of the entire
equation (6.24).

This means that there are only two possibilities: either the solution ŵ has c
real (the mode is called neutrally stable since it neither grows nor decays, but
merely oscillates), or there is a complex-conjugate pair of solutions ŵ and ŵ∗

with one of the two being an unstable mode. If c is real, then there is a possibility
that the quantity (ū(z)− c) could be zero somewhere in the domain. If this is
the case, then the ODE is singular at this point. We shall return to that case
later. For growing modes, however, c has a non-zero imaginary part, and the
problem is regular everywhere.

Based on this consideration, we can then derive one of the most important
results on plane parallel shear flows: Rayleigh’s inflection point theorem. This
theorem states that a necessary condition for the existence of an unstable mode
is that the flow profile must have an inflection point in the domain, that is,
some point where ū′′(z) = d2ū/dz2 = 0. To show this, first assume that c has a
non-zero imaginary part, and rewrite (6.24) as

d2ŵ

dz2
− k2xŵ − ŵ

ū′′(z)

ū(z)− c
= 0 (6.25)

Then multiply this equation by ŵ∗, and integrate the result over z, from the
bottom boundary (at z = 0) to the top boundary (at z = H). This yields∫ H

0

[
ŵ∗

d2ŵ

dz2
− k2x|ŵ|2 − |ŵ|2

ū′′(z)

ū(z)− c

]
dz = 0 (6.26)

The first term in the integral can then be integrated by parts, to give∫ H

0

[∣∣∣∣dŵdz
∣∣∣∣2 + k2x|ŵ|2 + |ŵ|2 ū′′(z)

ū(z)− c

]
dz = 0 (6.27)

The imaginary part of this equation is then

=(c)

∫ H

0

|ŵ|2 ū′′(z)

|ū(z)− c|2
dz = 0 (6.28)
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Since all of the terms within the integral are strictly positive except ū′′(z),
there are two possibilities: either ū′′(z) changes sign somewhere in the domain,
or =(c) = 0 (which we had assumed is not the case). This shows that =(c) 6=
0 requires the presence of an inflection point! Note that the presence of an
inflection point, by this analysis, is only a necessary condition for instability,
but not a sufficient one, which means that there could be flows with an inflection
point that are still stable. However, it does imply that flows without infection
point are always stable (in this inviscid limit).

Rayleigh’s inflection point theorem has a really important, and rather pe-
culiar consequence: it implies that linear shear flows (that is, flows of the kind
described by (6.1)) are linearly stable to shear instabilities! This result is quite
remarkable, and proves that the local analysis was right, in its stark contrast
with our energetic argument, which suggested that linear shear flows in the in-
viscid limit should always be unstable. As it turns out, shear flows are quite
different from the previously studied case of convection in that they are subject
to finite amplitude instabilities, that is, they are often linearly stable, but can be
destabilized by a strong enough perturbation. More on this later. In contrast,
if the flow has an inflection point, then this is usually the position around which
the shear instability will develop, and where the amplitude of the perturbation
is the largest.

A number of additional interesting theorems can be derived from this Rayleigh’s
instability equation. These include:

• Fjortoft’s theorem: This is a stronger form of Rayleigh’s inflection point
criterion, which states that a necessary condition for instability is that
ū′′(z)(ū − ūi) < 0 somewhere in the fluid, where ūi = ū(zi) and where
zi is the point at which ū′′(zi) = 0. A more physical interpretation of
Fjortoft’s theorem is simply that the inflection point must correspond to
a maximum in the shearing rate S(z) = |du/dz| rather than a minimum.
So for example (a) in Figure 6.2 could be linearly unstable, but (b) is not.

• Howard’s semicircle theorem: This is a very useful theorem that bounds
the possible values of the real and imaginary parts of c, and therefore places
upper limits on the growth rate of the unstable modes. The theorem states
that all unstable modes (that is with =(c) > 0) have an eigenvalue c that
satisfies(

<(c)− max ū+ min ū

2

)2

+ =(c)2 <
(max ū−min ū)2

2
(6.29)

or in other words, the complex number c lies on the complex plane within
the semi-circle of radius R = (max ū − min ū)/4, centered on the point
(max ū+ min ū)/2 on the real axis.

The proof of these theorems can be found in the textbook Hydrodynamic Sta-
bility by Drazin and Reid, for instance, or in the original papers.
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Finally, the combination of these theorems leads to the following strong state-
ments (whose proofs are beyond the scope of this class). If ū(z) is a smooth
flow, then eigenmodes of Rayleigh’s instability equation are of two kinds:

• Neutrally stable modes, with =(c) = 0. There is a continuum of them,
one for each possible (real) value of c in the interval [min ū,max ū]. The
modes are singular at the point z where ū(z) = c, and their first derivative
is discontinuous there. The position of this singularity is called a critical
layer.

• Pairs of complex-conjugate modes, with =(c) 6= 0. There are only very
few of them, at most one pair for each inflection point in the flow, and c
for these complex-conjugate pairs satisfies Howard’s semicircle theorem.


