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5.3.4 Truncated equations and the Lorentz system

As a final foray into nonlinear theory, we now explore the idea of using truncated
systems as a tool to study the time-dependent dynamics of convection close to
onset. Indeed, as we saw previously, only very few modes are excited near
onset. It may then be possible to model the system dynamics by considering
the nonlinear interaction between these few modes only. This procedure will
also verify our assumption of the previous section that the steady states found
are meaningful representations of the near-onset dynamics.

Derivation of the Lorenz equation

Our previous calculation of the weakly nonlinear steady-state just above onset
suggests that the modes that matter for small Ra are:

φ(x, z, t) = A(t) sin(πz) cos(kcx)

T (x, z, t) = B(t) sin(πz) sin(kcx)− C(t) sin(2πz) (5.1)

Plugging these expressions into (6.36), we get

ω = −∇2φ = (π2 + k2c )φ (5.2)

and so the momentum equation (6.37) becomes (recalling that the nonlinear
term in the momentum equation is zero)

(π2 + k2c )Ȧ sin(πz) cos(kcx) = RaPrBkc sin(πz) cos(kcx)

− Pr(π2 + k2c )2A sin(πz) cos(kcx) (5.3)

which simplifies directly to

Ȧ = RaPr
kc

π2 + k2c
B − Pr(π2 + k2c )A (5.4)

The temperature equation (6.39) on the other hand becomes

Ḃ sin(πz) sin(kcx)− Ċ sin(2πz) + kcπB sin(πz) cos(kcx)A cos(πz) cos(kcx)

+ [πB cos(πz) sin(kcx)− 2πC cos(2πz)] kcA sin(πz) sin(kcx)

−kcA sin(πz) sin(kcx)

= −(π2 + k2c )B sin(πz) sin(kcx) + 4π2C sin(2πz) (5.5)

Simplifying this, we get:

Ḃ sin(πz) sin(kcx)− Ċ sin(2πz) +
1

2
kcπAB sin(2πz)

−πkcAC sin(kcx) (sin(3πz)− sin(πz))− kcA sin(πz) sin(kcx)

= −(π2 + k2c )B sin(πz) sin(kcx) + 4π2C sin(2πz) (5.6)

We see that there are 3 types of terms: terms in sin(πz), in sin(2πz) and in
sin(3πz). Projecting this equation onto sin(πz) and sin(2πz) respectively (i.e.
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integrating this equation times sin(πz) or sin(2πz) from z = 0 to z = 1), and
ignoring the term in sin(3πz), we then get

Ȧ = RaPr
kc

π2 + k2c
B − Pr(π2 + k2c )A

Ḃ = kcA− kcπAC − (π2 + k2c )B

Ċ =
1

2
kcπAB − 4π2C (5.7)

With a little bit of work, it is then possible to rescale these equations into

a′ = Pr(−a+ b)

b′ = ra− b− ac
c′ = −sc+ ab (5.8)

where r = Ra/Rac, a is proportional to A, b is proportional to rB, c is propor-
tional to rC, and time has been rescaled as well (so the derivative with respect
to the new time is denoted by a prime instead of a dot). s is merely a constant
that depends on the time-non-dimensionalization. It is traditionally taken to be
8/3. The new set of equation is very famous: they form the Lorenz equations.
Note how a represents the amplitude of the convective rolls, b represents the
amplitude of the corresponding temperature perturbation, and c corresponds to
the change in the horizontally-averaged temperature profile.

Properties of the Lorenz equations

The Lorenz equations have been studied in depth, and their discovery started
the field of chaotic dynamics. Let’s briefly look into their propoerties. First,
note that they have an obvious fixed point at a = b = c = 0 (which corresponds
to the state of no convection). Do they have other fixed points? If they do, then
the latter must satisfy a = b, and c = ab/s = a2/s, and so

ra− a− a3/s = 0 (5.9)

Aside from the a = 0 steady-state which we already know of, we see there are
two other solutions with a = ±s(r−1). These solutions only exist when r ≥ 1, so
r = 1 marks an important bifurcation in the system. We know this bifurcation,
of course – it is the one that corresponds to Ra = Rac. We see that, for r below
1, the fixed point at the origin is stable. For r slightly above 1, the fixed point
at the origin is unstable, but there are two new stable steady convective states.
This justifies the approach selected in the previous lecture.

Further investigation shows that (at least in the Lorenz system), these new
fixed points also become unstable at the critical value

r =
Pr(Pr + s+ 3)

Pr− s− 1
(5.10)
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Figure 5.1: Evolution of the Lorenz system for r = 0.1, r = 10, r = 15 and
r = 28. The first case is subcritical, and the fixed point at the origin is globally
stable. The second and third cases, the fixed point at the origin is unstable, but
two new fixed points emerge. In the final case all the fixed points are unstable,
and the system evolves on a chaotic attractor.

Beyond that point, the solutions become chaotic and converge to a strange at-
tractor. This means that they are strictly not periodic, and strictly not pre-
dictable beyond a certain timescale, but nevertheless have somewhat recogniz-
able patterns. These various dynamical behaviors are illustrated in Figure 5.1,
for Pr = 10 and s = 8/3. The bifurcation parameter r is varied from 0.1 to 28.

5.4 Discussion and things to remember

In this Chapter we explored 4 different ways of studying an instability: a lo-
cal linear stability analysis (which, in this case, did not work), a global linear
stability analysis, an energy stability analysis, and finally, different ways of ap-
proaching the question of weakly nonlinear stability. These techniques can be
applied to any instability study in similar ways, although the details and the
outcomes will of course vary.
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For instance, there are many instabilities for which a local analysis is indeed
very helpful, as in the case of double-diffusive convection, for instance. Mean-
while, there are many systems for which energy stability as introduced here will
not give a particularly useful answer – as in the case of stratified shear flows.
Finally, weakly nonlinear theory, as we saw, can be quite difficult to investigate
– and the case studied here was one of the simpler examples!

If all else fails, of course, it is often possible to study the problem experiemen-
tally – either using laboratory experiments, or using numerical experiments.


