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5.3 Nonlinear stability of Rayleigh-Bénard con-
vection

In Chapter 1, we saw that linear stability only tells us whether a system is stable
or unstable to infinitesimally-small perturbations, and that there are cases in
which a system can be unstable to finite-amplitude perturbations even if it
is linearly stable. In the previous sections, we studied the linear stability of
Rayleigh-Bénard convection. The next natural step is to determine whether
the stability of this system is well-described by linear theory, or whether finite
amplitude instabilities for Rayleigh numbers below Rac are possible.

There are two different ways of doing this. The first is to perform a weakly
nonlinear analysis of the stability of the system close to the critical Rayleigh
number Rac. The second is to study the energy stability of the problem. These
two methods bear many similarities with standard tools of dynamical systems
theory: the first is related to normal forms, and the second to Lyapunov stability.
We now study both in turn, starting with the latter.

Energy stability is a somewhat cruder, but more general tool than weakly
nonlinear theory – it tells us about global stability in general without giving us
any information about what the actual nonlinear dynamics of the system are.
To gain insight on this more specific problem, weakly nonlinear theory is the
way to go.

As this will become evidently clear, both techniques require equal amounts
of inspiration and perspiration to work – hold on to your socks!

5.3.1 Non-dimensional equations

Before we begin, we recast the governing equations in non-dimensional form.
This is a standard step in most applied mathematical studies, and can actually
provide quite interesting insight into the problem at hand.

In what follows, we rescale time, space, and temperature perturbations using
these new units:

[l] = H , [t] =
H2

κT
and [T ] = ∆T (5.1)

The unit lengthscale is the only natural lengthscale of the system – the separa-
tion between the two plates. The choice of the unit time is less obvious; here,
we choose the thermal diffusion time across H. The unit temperature, again,
is pretty straightforward, and is the temperature difference between the two
plates. Finally, the unit velocity becomes

[v] =
[l]

[t]
=
κT
H

(5.2)

We will worry about non-dimensionalizing p shortly.
We now create the non-dimensional variables T = ∆T T̂ , u = κT

H û, etc...

and note that space is also rescaled, so that ∇ = 1
H ∇̂. The non-dimensional
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momentum equation can be derived with the following steps:

κ2T
H3

∂û

∂t̂
+
κ2T
H3

û · ∇̂û = − 1

Hρm
∇̂p+ αg∆T T̂ez +

ν

H2

κT
H
∇̂2û

⇒ ∂û

∂t̂
+ û · ∇̂û = − H2

κ2T ρm
∇̂p+

αg∆TH3

κ2T
T̂ez +

ν

κT
∇̂2û (5.3)

We recognize some of the important non-dimensional numbers introduced ear-
lier: the Rayleigh number and the Prandtl number. Also note that this calcu-
lation suggests that a good non-dimensionalization for p would be such that

H2

κ2T ρm
p = p̂ (5.4)

so finally,
∂û

∂t̂
+ û · ∇̂û = −∇̂p̂+ RaPrT̂ez + Pr∇̂2û (5.5)

Similar steps lead to

∇̂ · û = 0

∂T̂

∂t̂
+ û · ∇̂T̂ − ŵ = ∇̂2T̂ (5.6)

At this point, we see that Rayleigh-Bénard convection only ever needs to be
characterized by 2 non-dimensional numbers : Ra and Pr. This means that
two completely different systems (say, with different plate separation, different
temperature offset, different viscosity, different thermal diffusivity, etc.. ) can
actually behave exactly the same way as long as their Rayleigh and Prandtl
numbers are exactly the same. This rather surprising result is the main reason
why it does make sense, for instance, to do aerodynamic studies of airplanes
using smaller-scale models.

From here on, we drop the hats, but remember that all the quantities are
now non-dimensional.

5.3.2 Energy stability of Rayleigh Bénard convection

Lyapunov stability in dynamical systems

Lyapunov stability theory is an excellent way of proving whether a steady state
is globally stable instead of being just linearly stable. To see how it works, it is
best to start with a simple example based on a 2D dynamical system.

Consider the following system:

ḟ = −f + 4g

ġ = −f − g3 (5.7)
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It has an obvious fixed point at f = g = 0. Linearizing around it, we find that
small perturbations satisfy

ḟ = −f + 4g

ġ = −f (5.8)

so
f̈ = −ḟ − 4f (5.9)

This suggests that f ∝ eλt with λ2 + λ+ 4 = 0. This has solutions

λ =
−1±

√
1− 16

2
= −1

2
± i
√

15

2
(5.10)

so that
f(t) = e−t/2

(
a cos(

√
15t/2) + b sin(

√
15t/2)

)
(5.11)

where a and b are two integration constants, and similarly for g. This implies
that, linearly speaking at least, the origin is a stable spiral. But this is only
true for initial conditions close to the origin. Do all possibly initial conditions
always end up decaying to 0 as well?

To answer this question, let’s construct a Lyapunov function E(t). By def-
inition it has to be strictly positive, must be equal to zero at the fixed point
(here, f = g = 0), and has to satisfy dE/dt < 0 except at the fixed point, where
it must be 0. Let’s try:

E(t) = f2 + γ2g2 (5.12)

where γ2 remains to be determined (but is positive). By construction, we see
that E is indeed positive everywhere except at f = g = 0 where it is 0. Fur-
thermore,

dE

dt
= 2(fḟ + γ2gġ) = 2(−f2 + 4gf − γ2gf − γ2g4) (5.13)

If we take γ2 = 4, then the term in fg conveniently vanishes, and we are left
with

dE

dt
= −2f2 − 8g4 (5.14)

which is clearly negative, except at the fixed point.
What does this buy us? Well, we see that given any initial condition f0,

g0, the dynamical system will evolve in time following (5.8). However, as we
have just demonstrated, this also means that E will evolve in time according to
(5.14), and will therefore always decrease since dE/dt < 0. As t → ∞, E → 0
(since E has to be positive), which then necessarily implies that both f and g
must also be going to 0.

To summarize, it is possible to prove that a fixed point is globally stable
provided we can find a scalar function E of the dependent variables, that satisfies:

• E is strictly positive, except at the fixed point where it must be 0
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• dE/dt is strictly negative, except at the fixed point where it must be 0

A nice feature of this method is that it very easily generalizes to systems with
any number of dimensions, and can be used in fluid dynamics to prove the global
stability of a steady state.

The energy stability criterion

We now attempt to create a Lyapunov function to study the stability properties
of Rayleigh-Bénard convection. Since E has to be a scalar function, and yet has
to capture the dynamics of the whole fluid system, it is best to create is as an
integral over a domain D, where we take D to be the space between the plates.
Since this has infinite horizontal extent, we then reduce it to some portion of
the horizontal plane, and require periodicity in x (recall that we are considering
here a 2D problem only). Hence

E = 〈 stuff 〉 (5.15)

where 〈·〉 denotes the spatial integral over D.
For reasons that will be apparent shortly, it is also best to make E quadratic

in the dependent variables, rather than, say, quartic, or higher-order. The
simplest quadratic, positive definite integral we know is the one that is based,
for instance, on the kinetic energy of the fluid. Dotting the momentum equation
with u, and integrating over a domain, we get

1

2

∂

∂t
〈|u|2〉+

1

2
〈u · ∇|u|2〉 = −〈u · ∇p〉+ 〈RaPrwT 〉+ 〈Pru · ∇2u〉 (5.16)

Since ∇ · u = 0, we have

u · ∇|u|2 = ∇ · (u|u|2) and u · ∇p = ∇ · (pu) (5.17)

Furthermore, since the boundary conditions are w = 0 on the top and bottom
boundary, and periodic in x, the integral over the domain of these divergences
are all zero. Finally, using integration by parts and the same properties of the
boundary conditions, we have (using Einstein’s convention of repeated indices)

〈u · ∇2u〉 = 〈ui∂jjui〉 = −〈(∂jui)2〉 = −〈|∇u|2〉 (5.18)

The kinetic energy equation then becomes

1

2

∂

∂t
〈|u|2〉 = RaPr〈wT 〉 − Pr〈|∇u|2〉 (5.19)

This states that the total kinetic energy in the domain changes as a results of the
conversion of potential energy (first terms on the RHS) or viscous dissipation
(second term on the RHS). While viscous dissipation is always negative, the
first term can be positive (and must be, for instability to occur!). If that is the
case, 〈|u|2〉 can either increase or decay depending on which of the two terms,
energy injection or energy dissipation, is the largest.
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A similar evolution equation for another positive definite functional can be
constructed by considering the thermal energy equation instead, and multiplying
it by T . Integrating over the same domain D, using the same trick to get rid of
the divergence, and integrating the thermal diffusion term by parts, we get

1

2

∂

∂t
〈T 2〉 = 〈wT 〉 − 〈|∇T |2〉 (5.20)

Again, we see that 〈T 2〉 can either increase or decay depending on the relative
sizes of the first and second term on the RHS.

We can now construct a very general quadratic Lyapunov functional as
E(u, T ) = (1/2)〈|u|2 + γ2T 2〉, where γ2 is an arbitrary positive constant. The
evolution equation for E is then

∂E

∂t
= (RaPr + γ2)〈wT 〉 − Pr〈|∇u|2〉 − γ2〈|∇T |2〉 (5.21)

If we can somehow prove that, for all non-zero functions u, w and T (satisfying
∇ · u = 0) the RHS of this equation is strictly negative except at the fixed
point, then E must strictly decrease with time. Since E ≥ 0, the only possible
evolution of this system drives E towards 0, so that E → 0 as t → ∞. In
other words, all perturbations must decay, and the system is globally stable.
Given that this proof uses an energy-like functional to show global stability, the
criterion derived is often called energy stability.

In order to determine when dE/dt < 0, it is sufficient to show that (RaPr +
γ2)〈wT 〉 is smaller than the dissipation term D = Pr〈|∇u|2〉+ γ2〈|∇T |2〉 for all
possible functions u, w, T (satisfying ∇·u = 0). To do that, we now fix the total
dissipation, and maximize (RaPr + γ2)〈wT 〉, subject to the constraints D = D0

(where D0 is known), and ∇·u = 0. Energy stability would then simply require
that this maximum value be smaller than D0.

In order to maximize (RaPr + γ2)〈wT 〉 subject to these condition, we intro-
duce the Lagrange multipliers Λ1 and Λ2 , and maximize instead

S = (RaPr + γ2)〈wT 〉+ 〈Λ1(Pr|∇u|2 + γ2|∇T |2 −D0)〉+ 〈Λ2∇ · u〉 (5.22)

over all functions u, w, T , and Λ2. Note how each Lagrange multiplier is associ-
ated with one of the constraints. While Λ1 is a constant, because we are trying
to impose D = D0 globally, Λ2 is a function because we want to enforce ∇ · u
at every point in the domain D. We are now simply left to maximize S.

Optimization using Euler-Lagrange equations.

Let’s recall how one may go about maximizing a functional (rather than a
function). Consider the much simpler functional, say,

S(f) =

∫ b

a

L(f, ḟ ;x)dx (5.23)
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where ḟ = df/dx and where f is subject to simple conditions such as f(a) = fa
and f(b) = fb.

Stating that f is the function that maximizes S is equivalent to saying that
infinitesimal variations in f result in a zero change in S, at least at first order.
Indeed, near the maximum xmax of a normal single-variable function g(x),

g(x) = g(xmax)+0.5(x−xmax)2g′′(xmax)→ g(x)−g(xmax) ' 0+O((x−xmax)2)
(5.24)

The same is true for S, so if f(x) = fmax(x) + δf(x), where fmax(x) is the
function which maximizes S, and δf(x) is a small perturbation around it, then
we expect that

δS = S(fmax + δf)− S(fmax) ' 0 (5.25)

This condition is the one that effectively yields fmax.

Indeed, let’s evaluate δS:

δS =

∫ b

a

[
L(fmax + δf, ḟmax + δḟ ;x)− L(fmax, ḟmax;x)

]
dx ≡

∫ b

a

δLdx

(5.26)
which defines δL. Since

δL = δf
∂L
∂f

+ δḟ
∂L
∂ḟ

(5.27)

then

δS =

∫ b

a

[
δf
∂L
∂f

+ δḟ
∂L
∂ḟ

]
dx (5.28)

Finally, note that δḟ = d(δf)/dx so, using integration by parts,∫ b

a

∂L
∂ḟ

dδf

dx
dx =

[
∂L
∂ḟ

δf

]b
a

−
∫ b

a

δf
d

dx

∂L
∂ḟ

dx (5.29)

Since f has to satisfy the boundary conditions, we cannot perturb it at x = a
and x = b. This means that δf(a) = δf(b) = 0, so the integrated term is equal
to 0. This leaves us with:

δS =

∫ b

a

[
δf
∂L
∂f
− δf d

dx

∂L
∂ḟ

]
dx =

∫ b

a

δf

[
∂L
∂f
− d

dx

∂L
∂ḟ

]
dx = 0 (5.30)

For this to be true for any possible perturbing function δf(x), the term in the
square brackets have to be zero. In other words, the function fmax satisfies the
equation

∂L
∂f
− d

dx

∂L
∂ḟ

= 0 (5.31)

(with the boundary condition f(a) = fa, and f(b) = fb). This equation is called
an Euler-Lagrange equation.
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Note that this method can easily be generalized when L is a functional of
many dependent variables {fi}i=1..I and when the integral is in many dimensions
{xj}j=1..J . For each fi, we have

∂L
∂fi
−
∑
j

∂

∂xj

∂L
∂(∂fi/∂xj)

= 0 (5.32)

Condition for energy stability.

We now use Euler-Lagrange’s equations to maximize S given by (5.22). Using
the notation of the previous section, S is given by

S =

∫
Ldxdz (5.33)

where L is the functional

L = (RaPr + γ2)wT + Λ1(Pr|∇u|2 + γ2|∇T |2 −D0) + Λ2∇ · u (5.34)

where, recall, Λ1 is a constant while Λ2 is a function of x and z. Since we have
two independent variables, we have to calculate

∂L
∂q
− ∂

∂x

∂L
∂(∂q/∂x)

− ∂

∂z

∂L
∂(∂q/∂z)

= 0 (5.35)

where q is either u, w, T or Λ2.
Let’s work first with the derivative with respect to Λ2, which is the simplest

one since L does not depend on any derivatives of Λ2. We simply have

∂L
∂Λ2

= ∇ · u = 0 (5.36)

which recovers the incompressibility constraint. This suggests that, as usual, we
can represent u by using a stream function with u = ∂φ/∂z and w = −∂φ/∂x.
Similarly, the derivative with respect to Λ1 also just recovers the constraint
D = D0.

Let’s now work with the derivative with respect to T . We have

∂L
∂T

= (RaPr + γ2)w (5.37)

while
∂L

∂(∂T/∂x)
= 2γ2Λ1

∂T

∂x
(5.38)

since

|∇T |2 =

(
∂T

∂x

)2

+

(
∂T

∂z

)2

(5.39)

and similarly for the derivative with respect to ∂T/∂z. Putting these together
using (5.35), we then get

(RaPr + γ2)w − 2γ2Λ1∇2T = 0 (5.40)
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Similarly, it can be shown that

(RaPr + γ2)T − ∂Λ2

∂z
− 2PrΛ1∇2w = 0

−∂Λ2

∂x
− 2PrΛ1∇2u = 0 (5.41)

We can then eliminate Λ2 between the two momentum-like equations, to get

(RaPr + γ2)
∂T

∂x
= −2PrΛ1∇4φ (5.42)

and finally we can eliminate, say, T , to get

(RaPr + γ2)2
∂2φ

∂x2
= 4Prγ2Λ2

1∇6φ (5.43)

This shows that the solution φ that maximizes the functional S is the solution of
a linear eigenvalue problem, where the eigenvalue is Λ1 (all the other parameters
being known and fixed). Since the solutions have to satisfy the same boundary
conditions as the original problem (i.e. periodic in x and impermeable, stress-
free in z, with T given on the boundaries), they have to be of the form

φ(x, z) = φ̂eikxx sin(nπz)

ikxT (x, z) = − 2PrΛ1

(RaPr + γ2)
(k2x + n2π2)2φ(x, z) (5.44)

(where we implicitly mean the real part of these quantities) with

k2x(RaPr + γ2)2 = 4Prγ2Λ2
1(k2x + n2π2)3 (5.45)

Let’s now go back the original question, and determine under which condition
the maximum of (RaPr + γ2)〈wT 〉 is indeed smaller than D0. First note that
by (5.40), for the optimal functions,

(RaPr + γ2)〈wT 〉 = 2γ2Λ1〈T∇2T 〉 = −2γ2Λ1〈|∇T |2〉 (5.46)

We are then left to estimate the sign of

dE

dt
= (−2Λ1 − 1)γ2〈|∇T |2〉 − Pr〈|∇u|2〉 (5.47)

Using (5.44), we have

〈|∇T |2〉 = (k2x + n2π2)〈T 2〉 =
4Pr2Λ2

1

k2x(RaPr + γ2)2
(k2x + n2π2)5〈φ2〉 (5.48)

while

〈|∇u|2〉 = 〈
(
∂2φ

∂x2

)2

+ 2

(
∂2φ

∂x∂z

)2

+

(
∂2φ

∂z2

)2

〉

= (k2x + n2π2)2〈φ2〉 (5.49)
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so

dE

dt
=

[
(−2Λ1 − 1)γ2

4PrΛ2
1

k2x(RaPr + γ2)2
(k2x + n2π2)3 − 1

]
Pr(k2x + n2π2)2〈φ2〉

(5.50)
We can simplify this greatly using (5.45):

dE

dt
= −(2Λ1 + 2)Pr(k2x + n2π2)2〈φ2〉 (5.51)

which is always negative as long as 2Λ + 2 > 0, which implies Λ1 > −1.
Recall that Λ1 is the solution of (5.45), so

Λ1 = ± kx(RaPr + γ2)

2
√

Prγ(k2x + n2π2)3/2
(5.52)

Note that if Λ1 > 0, energy stability is always guaranteed because of (5.47).
The interval we need to worry about is therefore −1 < Λ1 < 0. The condition
for the negative root to be larger than −1 is equivalent to saying that

(RaPr + γ2)2

4Prγ2
<

(k2x + n2π2)3

k2x
(5.53)

This will always be true as long as the LHS of this inequality is smaller than
any possible value that the RHS may take. As it turns out, we have already
worked out the minimum of this expression – it’s the same as in linear theory!
The minimum value, 27π4/4, is achieved for n = 1, and for k2x = π2/2. Energy
stability is therefore guaranteed provided:

(RaPr + γ2)2 < 27Prπ4γ2 (5.54)

At this point, it is worth recalling that we constructed not a single Lyapunov
function, but an entire family of them – each corresponding to a different value of
γ. For each Lyapunov function, we get a sufficient criterion for energy stability
as Ra < Rac(γ) where

Rac(γ) =

√
27Prπ2γ − γ2

Pr
(5.55)

To find the maximum possible value of Ra below which it is possible to guarantee
stability, we simply have to choose the γ that maximizes the RHS of this last
inequality. This occurs when γ =

√
27Prπ2/2. Putting everything together, we

can then prove the following result: if

Ra < max
γ

Rac(γ) =
27π4

4
(5.56)

then the system is energy stable. Note how this critical value is exactly the same
as the one we had obtained for the linear stability criterion.

This rather remarkable result proves that the criterion for linear stability in
Rayleigh-Bénard convection is also the criterion for global stability. This implies
that below Rac = 27π4/4, it is not possible to destabilize the fluid however large
the perturbation is!


