
Chapter 2

Non-dispersive Waves

We will begin this series of lectures on waves by spending some time discussing
non-dispersive waves. Sound waves are the most common example of non-
dispersive waves in fluids. Other examples in other contexts include electro-
magnetic waves, waves on a uniform string, etc .... As we shall see, the defining
property of non-dispersive waves is that their dispersion relation (i.e. the rela-
tionship between a wave’s spatial wavenumber k and temporal frequency ω) is
linear: ω = αk. As a result of this linear relation, non-dispersive waves have
a number of interesting properties, which will be discussed here. Although we
will limit our analysis to the case of sound waves, the general properties we shall
derive are applicable to all non-dispersive waves.

In the first part of this lecture, we will look at small-amplitude sound waves
in a homogeneous and time-independent background medium. Later on, we will
relax some of these assumptions and see what other interesting dynamics arise.

2.1 Sound waves in a homogeneous, invariant
medium

When sound waves are small in amplitude, we can treat them perturbatively,
that is, we can view them as small perturbations on a given background state.
As given in the title of this Section, we will first consider a background state
that is homogeneous (i.e. its properties are independent of position) and time-
invariant (i.e. its properties are independent of time). Let us therefore assume
that we have a fluid, whose density, pressure and temperature are constant, and
equal to ρ0, p0 and T0 respectively. This could be, for instance, the conditions
inside a well-insulated room. We shall assume that this fluid has, for instance,
an equation of state relating ρ0, p0 and T0. We shall also assume that the
background fluid is perfectly still, that is, without any motion at all.
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12 CHAPTER 2. NON-DISPERSIVE WAVES

2.1.1 The wave equation

We now want to study how pressure and velocity perturbations propagate in
this environment. The equations describing the motion of the fluid, assuming
that it is inviscid (which is a good approximation for normal-frequency sound
waves in air) are

∂ρ

∂t
+∇ · (ρu) = 0

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p (2.1)

where we have neglected the effect of gravity on the grounds that it is very small
– this can be verified a posteriori. Even with this approximation, solving these
equations is rather difficult because of their nonlinear nature. However, if we
assume that perturbations to the motionless, homogeneous background state are
small, then we can linearize the governing equations around that background
state, and study the behavior of the linearized equations instead. This approach
is in essence very similar to that used in “Dynamical Systems” (AMS214), to
study the behavior of solutions near fixed points.

Hence, let p(x, y, z, t) = p0 + p̃(x, y, z, t), and similarly ρ(x, y, z, t) = ρ0 +
ρ̃(x, y, z, t). Since the background state is motionless, we simply have u = ũ.
Substituting this into the governing equations, we then have

∂

∂t
(ρ0 + ρ̃) +∇ · [(ρ0 + ρ̃)ũ] = 0

(ρ0 + ρ̃)
∂ũ

∂t
+ (ρ0 + ρ̃)ũ · ∇ũ = −∇(p0 + p̃) (2.2)

These equations can be simplified by remembering that the steady state is ho-
mogeneous (so ∇p0 = 0 and ∇ρ0 = 0) and time-invariant (so ∂ρ0/∂t = 0), and
neglecting any quadratic term in the perturbations. This implies

∂ρ̃

∂t
+∇ · (ρ0ũ) = 0

ρ0
∂ũ

∂t
= −∇p̃ (2.3)

Taking the time-derivative of the mass conservation equation, and substituting
the momentum equation yields

∂2ρ̃

∂t2
+∇ ·

(
ρ0
∂ũ

∂t

)
=
∂2ρ̃

∂t2
−∇ · (∇p̃) = 0 (2.4)

This implies
∂2ρ̃

∂t2
= ∇2p̃ (2.5)

Clearly, we need another equation to relate ρ̃ and p̃.
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So far, we have not used the equation of state, so let’s do so now, and linearize
it as we did for the momentum and mass conservation equations. Suppose, for
instance, that we have a perfect gas, for which p = RρT . Then, linearizing this,
we have

p0 + p̃ = R(ρ0 + ρ̃)(T0 + T̃ ) (2.6)

which yields

p̃ = R(ρ0T̃ + T0ρ̃) (2.7)

This equation has the disadvantage of containing T̃ , for which need another
equation. However, we have not used the thermal energy equation yet, so this
is where the final piece of the puzzle will come from.

2.1.2 Isothermal vs. Adiabatic sound waves

Physically speaking, the appearance of T̃ in the problem is not particularly
surprising: pressure waves are – by definition – compressional waves, and in
many cases a gas heats up when compressed. The change in the temperature
then changes the density, through the equation of state. The proper way to
proceed with the problem is to add the thermal energy equation and linearize
it as well, to close the system. This is somewhat overkill, however, but a nice
exercise. In practice, there are two extreme possibilities.

On the one hand, if the waves are very low frequency, and thermal dissipation
is very efficient (either by radiation in an optically thin medium, or by very
efficient thermal diffusion), then any local heating of a fluid parcel is immediately
dissipated away. In that case, despite the compressional heating, T̃ = 0 at all
times and p̃ and ρ̃ are now related via p̃ = RT0ρ̃. Plugging this in the wave
equation, we get

∂2ρ̃

∂t2
= RT0∇2ρ̃ = c2T∇2ρ̃ (2.8)

which now really has the form of a wave equation, and reveals the quantity RT0
to be the square of the wave speed cT (see AMS 212A, and below). Given the
assumption that the perturbations are isothermal, we see that cT =

√
RT0 is

the isothermal wave speed.
On the other hand, we could assume that we are in an optically thick

medium, and/or that the waves are high frequency, so the heat generated by
compression is locally trapped – the waves are adiabatic. We saw in the previous
chapter that, in the adiabatic case, one can use the entropy equation instead of
the thermal energy equation, and the former reduces to

Dp

Dt
= γ

p

ρ

Dρ

Dt
(2.9)

for adiabatic motion. Linearizing this equation, we get

∂

∂t
(p0 + p̃) + ũ · ∇(p0 + p̃) = γ

p0 + p̃

ρ0 + ρ̃

[
∂

∂t
(ρ0 + ρ̃) + ũ · ∇(ρ0 + ρ̃)

]
(2.10)
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so, neglecting all quadratic terms in the perturbations, we get

∂p̃

∂t
= γ

p0
ρ0

∂ρ̃

∂t
(2.11)

Plugging this into the wave equation, we now have

∂2p̃

∂t2
= γ

p0
ρ0
∇2p̃ = γRT0∇2p̃ = c2s∇2p̃ (2.12)

Again, we recover a standard wave equation but this time the wave speed is
slightly different, and is cs =

√
γRT0 =

√
γcT . The quantity cs is also a sound

speed, but because it was derived for adiabatic perturbations, it is called the
adiabatic sound speed.

How different are the adiabatic and isothermal sound speeds? The answer
is, for normal fluids, not very different – the adiabatic index γ is fairly close to
1, and so its square root is even closer to 1. For instance, for air at ambient
temperature, γ ' 1.4 so the difference between the isothermal and adiabatic
sound speeds is of the order of 18%. Still, this is not negligible, and was already
noted by Laplace. The isothermal sound speed in air is about 290m/s, and the
adiabatic sound speed is about 340m/s. For normal frequency sounds (pitch of
someone’s voice, etc..), it is the adiabatic sound speed that is relevant.

Exercise: If the time between a lightning strike and the roll of thunder is
10 seconds, how far was the strike?

2.1.3 Where are sound waves found?

Sound waves are simply pressure perturbations that propagate in a compressible
medium. Of course, they are most commonly thought of in the context of air, or
more generally in any terrestrial gases. However, sound waves also exist in any
astrophysical object, and are likely to be found everywhere in the universe, from
the interior of stars and planets (where they are called p-modes), in accretion
disks, and in the interstellar and intergalactic medium. They have recently
gained popularity via helio- and astero-seismology, where they are observed and
their characteristics are used to infer the internal properties of the solar interior
and more generally of stellar interiors.

Liquids such as water are in fact also compressible (but much less so than
gases), so they also support sound waves. The speed of sound in water at
ambient temperature is around 1500 m/s, hence about 4-5 times faster than in
air.

2.2 Some 1D solutions of the wave equation

In what follows, for simplicity we will ignore the difference between the isother-
mal and the adiabatic sound speed, and drop the tildes, to write the wave
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equation as
∂2p

∂t2
= c2∇2p (2.13)

where c is constant and can either be cT or cs.
For simplicity, we will also look at solutions in one dimension, so the wave

equation becomes
∂2p

∂t2
= c2

∂2p

∂x2
(2.14)

Different forms of solutions to this equation exist, which all bring a somewhat
different insight into the problem. Let us look at them in turn. We will first
consider the propagation of sound waves in an infinite (1D) domain, so x ∈
(−∞,+∞) and no boundary conditions are applied (only initial conditions).
We will then look at waves in an acoustic cavity (x is limited to a given interval
and boundary conditions are applied at the edge of the interval).

2.2.1 D’Alembert’s solution in an infinite domain

D’Alembert’s solution is derived by noting that it is possible to factor the wave
equation in the following way:

(∂t − c∂x)(∂t + c∂x)p = 0 (2.15)

Using this information, let’s now re-map the (x, t) space into a (ξ, η) space1

where
η = x− ct and ξ = x+ ct (2.16)

With this transformation, we conveniently have that

∂η =
1

2

(
∂x −

1

c
∂t

)
and ∂ξ =

1

2

(
∂x +

1

c
∂t

)
(2.17)

so that the original equation simply becomes

∂ηξp = 0 (2.18)

This has the solutions

p(x, t) = f(η) + g(ξ) = f(x− ct) + g(x+ ct) (2.19)

where f and g are two arbitrary constants, that can be determined by applying
initial conditions to the problem.

Suppose that p(x, 0) = p0(x) and pt(x, 0) = q0(x). Then we know that

p0(x) = f(x) + g(x)

q0(x) = −cf ′(x) + cg′(x) (2.20)

1While this remapping appears to have been pulled out of a hat, note that there is a sound
mathematical theory behind it, that can be applied to find such useful transformation for any
second-order PDEs (see the theory of canonical forms in AMS212A for detail).
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Integrating the second equation between 0 and x yields

f(0)− f(x) + g(x)− g(0) =
1

c

∫ x

0

q0(x′)dx′ (2.21)

Eliminating f yields g, and vice versa so

f(x) =
1

2

(
p0(x)− 1

c

∫ x

0

q0(x′)dx′ + f(0)− g(0)

)
g(x) =

1

2

(
p0(x) +

1

c

∫ x

0

q0(x′)dx′ + g(0)− f(0)

)
(2.22)

While new arbitrary integration constants appear here, they cancel out in the
final solution:

p(x, t) = f(x−ct)+g(x+ct) =
1

2
(p0(x+ ct) + p0(x− ct))+

1

2c

∫ x+ct

x−ct
q0(x′)dx′

(2.23)
This solution is called d’Alembert’s solution, and uniquely specifies a solution to
the sound-wave equation (in the 1D infinite domain) from its initial conditions.

We see that if q0(x) = 0, then the solution is the sum of 2 perturbations that
are each half the amplitude of the initial one, and travel respectively left-ward
and right-ward away from the source at velocity c, without change of form. If
q0(x) 6= 0 on the other hand, the solution becomes asymmetric (Homework),
but still contains two packets of information that travel as above, one to the left
and one to the right.

Worked Problem: What is d’Alembert’s solution for a Gaussian wave packet
p0(x) = p0 exp(−x2/2) initially at rest (q0 = 0)?

Using the formula we simply have

p(x, t) =
p0
2

exp

(
− (x− ct)2

2

)
+
p0
2

exp

(
− (x+ ct)2

2

)
(2.24)

The solutions are shown in Figure 2.1. After a short while, the initial Gaus-
sian splits into two Gaussians, each with half the original amplitude. One moves
to the left at velocity c, one moves to the right at velocity c. Once the two trav-
eling perturbations are sufficiently far away from each other that they no longer
overlap, the solution simply looks like two traveling Gaussians that each satisfy
the 1st order advection equations

(∂t + c∂x)p = 0 and (∂t − c∂x)p = 0 (2.25)

respectively. In this sense, the first-order PDEs

∂tp± c∂xp = 0 (2.26)
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Figure 2.1: d’Alembert’s solution for a Gaussian wave packet with p0(x) =
exp(−x2/2) with c = 1 at various times.

are also often referred-to as wave equations as well, although in my opinion that
is somewhat confusing.

D’Alembert’s solution thus illustrates one of the most important properties of
sound waves (and of all non-dispersive waves), namely that of propagation with-
out change of form (at least, in the Cartesian 1D problem). The speed at which
each of these packets propagates is called the group speed. Here, we see that the
group speed is simply equal to ±c depending on the direction of propagation.

2.2.2 Monochromatic wave solution of the wave equation
in an infinite domain

Another type of solution of the wave equation that is also valid in an infinite
domain is one of the form

p(x, t) = p̂eikx−iωt (2.27)

In this expression, p̂ can be complex. These are called monochromatic plane
wave solutions. Note that, written as such, p(x, t) looks like it could be complex.
In fact it is (unless p̂ is chosen just right), but that’s not really a problem. In
fact, it will be useful to keep p written as is and allow for complex solutions,
as long as we remember at the end of the calculation that only the real part of
this function is physical.

Plugging this back into the wave equation, we see that this is indeed a
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solution, provided ω2 = c2k2. Indeed,

∂2p

∂t2
= −ω2p̂(k)eikx−iωt = −ω2p (2.28)

while
∂2p

∂x2
= −k2p̂(k)eikx−iωt = −k2p (2.29)

So, ∂2p/∂t2 = c2∂2p/∂x2 becomes

ω2 = c2k2 → ω = ±ck (2.30)

This shows that the dispersion relation for sound waves, that is, the relation
between the wave’s frequency ω and the wave’s wavenumber k, is linear. This is
the defining property of non-dispersive waves.

We also see that there are two branches to the dispersion relation, one with
ω = ck and one with ω = −ck. In all that follows, we will adopt the convention
that ω has to be positive, so the two branches correspond to two wavenumber
of different sign: k = ±ω/c. The sign of k then also defines the direction of
propagation. The dispersion relation then takes the more common form

ω = c|k| (2.31)

The true solution to the wave equation should therefore be written as a
linear combination of the solutions in each branch:

p(x, t) = p̂+e
ik+x−iωt + p̂−e

ik−x−iωt

= p̂+e
i|k|(x−ct) + p̂−e

−i|k|(x+ct) (2.32)

Recalling that we only care about the real part of the solution, this should really
be interpreted as

p(x, t) = <
(
p̂+e

i|k|(x−ct) + p̂−e
−i|k|(x+ct)

)
(2.33)

If the constants p̂± are real, then

p(x, t) = p̂+ cos(|k|(x− ct)) + p̂−(k) cos(|k|(x+ ct)) (2.34)

while they are pure imaginary,

p(x, t) = −|p̂+| sin(|k|(x− ct)) + |p̂−| sin(|k|(x+ ct)) (2.35)

Any p̂ that has both a real and an imaginary part will yield a solution for p(x, t)
that contains both a sine and a cosine function, but in all cases, we clearly
recognize that the solution has two terms, a left-ward traveling wave and a
right-ward traveling wave, as in d’Alembert’s solution – the two descriptions of
the sound waves are of course consistent with one another. In what follows, we
now just consider the right-ward traveling wave, for simplicity.



2.2. SOME 1D SOLUTIONS OF THE WAVE EQUATION 19

As should now be obvious from their real expressions, these solutions have
infinite spatial extent, and oscillate regularly in time and space with a frequency
ω (and period T = 2π/ω), and a wavenumber k (and wavelength λ = 2π/|k|).
They can also be rewritten as

p(x, t) = p̂eiθ(x,t) (2.36)

where θ(x, t) = kx−ωt = k(x− ct) (for the right-ward wave) is called the phase
function. Later, we shall generalize the definition of the phase function, but
in the meantime note the interesting relationship between partial derivatives of
the phase function, and the frequency and wavenumber of the wave:

ω = −∂θ
∂t

and k =
∂θ

∂x
(2.37)

Given the expression for p(x, t) in terms of θ, it is clear that p is constant
if θ is. For instance, wave-crests and wave-trophs, (the maxima and minima
of the function p) are achieved at specific values of θ. We can then ask the
question: at which speed do the pressure maxima and minima travel? Since the
maxima are given by constant values of θ, say, θc, their trajectories are given by
θc = kx−ωt which can be solved for x to yield xc(t) = (θc+ωt)/k. The velocity
of the maxima is the derivative of xc with respect to time, and is therefore

cp =
ω

k
= c (2.38)

for the right-propagating wave. This quantity is called the phase speed of the
wave. The fact that the phase speed is equal to the group speed is another
defining property of non-dispersive waves. This is actually the reason why they
propagate without change of form. A good way to visualize the phase speed is
to think about a problem with initial conditions p0(x) = cos(x). The pressure
field later on is given by p(x, t) = cos(x− ct) (for the right-propagating wave).
The solution is shown in Figure 2.2. At t = 0, the maxima (in yellow) are at
x = 0, x = 2π, etc... Later on these maxima move to the right, at a constant
velocity c. These form paths in the (x, t) plane that look like straight lines with
slope 1/c.

2.2.3 Superposition of monochromatic waves in an infinite
domain

In general, the initial conditions for a sound wave are localized, not infinite –
more like the Gaussian packet example than the infinite sine wave or cosine
wave example. Imagine for instance a sound created by someone’s vocal chords,
by a loud speaker, etc.. As a result, the monochromatic plane waves studied
above, which have the same amplitude everywhere in space and exist for all
times, is not particularly relevant physically. Instead, the true solution is a
linear superposition of monochromatic waves:

p(x, t) = <
[∫

p̂(k)eikx−iω(k)tdk

]
(2.39)
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Figure 2.2: Right-ward propagating pressure wave with initial condition p0(x) =
cos(x), and velocity c = 1. The lines constant phase in the (x, t) plane have
slope 1/c.

where ω(k) = c|k|. The p̂(k) is simply obtained from the Fourier transform of
the initial conditions:

p0(x) = p(x, 0) = <
[∫

p̂(k)eikx
]

q0(x) = pt(x, 0) = <
[
−i
∫
p̂(k)ω(k)eikx

]
(2.40)

Using properties of Fourier transforms, and a bit of work, it can be shown that
this is in fact exactly equivalent to d’Alembert’s solution (as it should be !)

Superposition of waves thus yields exact solutions of the governing equa-
tions, valid at all times and for any initial conditions, and recover d’Alembert’s
solution. However, while d’Alembert’s solution is not obvious to generalize in
higher dimensions, wave superposition is, and is therefore the preferred method
for general problems. The main difficulty, however, is in the interpretation of
the solutions, which isn’t particularly intuitive when written in this form (unless
you fluently speak Fourier Transforms language).

Later, we shall construct other solutions of the wave equation that have a
more intuitive form, and are more easily generalized to the case of non-constant
sound-speed. Before we proceed, however, let’s look a case we have ignored so
far, namely that of waves in a finite domain.

2.2.4 Sound waves in an acoustic cavity

We now move away from the infinite domain case, and consider sound waves in
a finite interval, often called an acoustic cavity. To create a 1D acoustic cavity,
we have to consider the somewhat artificial problem of sound waves generated
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in a very narrow tube of finite length L, closed at both ends. The tube is filled
with homogeneous fluid, in which the sound speed is c. The equation for the
wave is therefore exactly the same as we have looked at earlier, namely (2.14).

This time, however, we need boundary conditions to describe what happens
to the waves when they hit the ends of the tube. There are a number of pos-
sibilities, but a typical one would be to require that there be no fluid motion
across the end of the tube. How do we relate this condition to the pressure?
To do so, we need to go back to the original set of equations from which the
wave equation was derived, and remember that the velocity perturbations and
the pressure perturbations are related via

∂u

∂t
= −∂p

∂x
(2.41)

in one dimension. Disallowing any fluid motion across the boundary implies
that u = 0 at all times on the boundary, which then requires that

∂p

∂x
= 0 (2.42)

at both ends of the tube (e.g. at x = 0 and x = L).

Eigenmodes and eigenfrequencies

We now have to solve the sound wave equation (2.14) under the boundary
conditions given above. To do this, we will use separation of variables, and look
for basic solutions that can be written as a function of x times a function of t
(cf. AMS 212A), namely a(x)b(t). Plugging this into the wave equation, we get

a(x)
d2b

dt2
= c2b(t)

d2a

dx2
(2.43)

Dividing both sides by a(x)b(t) we get

1

b(t)

d2b

dt2
= c2

1

a(x)

d2a

dx2
(2.44)

The LHS is a function of t only, while the RHS is a function of x only, so the two
can only be equal for all x and t if they are both constants. Let that constant
be α, for instance. It’s quite easy to show that α cannot be positive (Hint: try
it, and show that there are no solutions to the spatial problem in that case.).
We are left with two cases

• α = 0: In that case, we get d2a/dx2 = 0, whose solution is linear in x. The
only solution that also satisfies the boundary conditions, which become
da/dx = 0 at both ends, is the constant solution: a0(x) = C0.

• α < 0: In that case, let’s rewrite α = −ω2 (which is by definition a
negative number). We then have

d2a

dx2
= −ω

2

c2
a (2.45)
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which has oscillatory solutions:

a(x) = A cos
(ω
c
x
)

+B sin
(ω
c
x
)

(2.46)

In order to satisfy the boundary conditions at x = 0, we need to have
B = 0. In order to satisfy the boundary conditions at L, we need

ωL

c
= nπ (2.47)

where n is an integer number. This shows that the constant ω cannot take
just any value, it is instead quantized, and can only take the values

ωn =
nπc

L
(2.48)

and for these values of ω, the solutions are

an(x) = An cos
(nπx
L

)
(2.49)

Note that since we effectively solved an eigenvalue problem for the eigenfunction
a and the eigenvalue ω, the solutions an(x) are called the spatial eigenmodes of
the problem and ωn are called the eigenfrequencies.

Now that we have solved the spatial problem, we now turn to the temporal
problem:

d2b

dt2
= −ω2b (2.50)

For each value of ωn there will be a corresponding function bn. The temporal
solutions are

bn(t) = Cn cos(ωnt) +Dn sin(ωnt) (2.51)

for n ≥ 1, while for the case where ω = 0, we simply have b0(t) constant.

We have therefore constructed a series of basic solutions of the form:

a0(x)b0(t) ∝ constant

an(x)bn(t) ∝ cos (knx) [Cn cos (ωnt) +Dn sin (ωnt)] for n ≥ 1 (2.52)

where
kn =

nπ

L
and ωn =

nπc

L
for n ≥ 1 (2.53)

The actual solution for p(x, t) is then a linear combination of all these basic
solutions:

p(x, t) = C0 +
∑
n≥1

(Cn cos(ωnt) +Dn sin(ωnt)) cos(knx) (2.54)

The integration constants Cn and Dn are determined from the initial conditions
of the system.
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Figure 2.3: Half a period of the solution to the sinusoidal initial condition
problem, with c = 1.

Worked Example 1: Find the solution to the 1D wave equation in a tube
of length 1 with initial conditions p(x, 0) = 1 + 3 cos(2πx) and pt(x, 0) = 0.

In this case, we set

p(x, 0) = 1 + 3 cos(2πx) = C0 +
∑
n≥1

Cn cos(knx)

pt(x, 0) = 0 =
∑
n≥1

Dnωn cos(knx) (2.55)

where kn = nπ. The second equation implies that Dn = 0 for all n, while the
first implies that C0 = 1 and C2 = 3, with all other Cn = 0, so the complete
solution is

p(x, t) = 1 + 3 cos(2πct) cos(2πx) (2.56)

We see that the solution is a standing wave, i.e. a wave whose nodes remain
in place, and whose amplitude changes with time. This is illustrated in Figure
2.3.

This example is somewhat trivial, because the initial condition is basically a
single eigenmode of the problem. It nevertheless illustrates an important prop-
erty of the waves in a finite domain, namely that only those eigenmodes that
are excited through the initial conditions actually contribute to the solution –
all the others that have 0 amplitude at t = 0 continue to have 0 amplitude later
on. In general, however, a given set of initial conditions will excite the entire
spectrum of eigenmodes. The mathematical derivation of the full solution is
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then a little more complicated but the principle is the same.

Worked example 2: Find the solution to the 1D wave equation in a tube
of length 10 with initial conditions p(x, 0) = exp(−(x− 5)2/2) and pt(x, 0) = 0.

In this case, we have

p(x, 0) = exp(−(x− 5)2/2) = C0 +
∑
n≥1

Cn cos(knx)

pt(x, 0) = 0 =
∑
n≥1

Dnωn cos(knx) (2.57)

so we still have Dn = 0 for all n, but identifying the Cn is a little more difficult.
Here, it’s useful to remember some of the orthogonality properties of sine and
cosine functions, namely that∫ L

0

cos
(nπx
L

)
sin
(mπx

L

)
dx = 0 for any n and m∫ L

0

sin
(nπx
L

)
sin
(mπx

L

)
dx =

L

2
δnm∫ L

0

cos
(nπx
L

)
cos
(mπx

L

)
dx =

L

2
δnm +

L

2
δn0δm0 (2.58)

Using these relationships, we then have

∫ L

0

exp(−(x− 5)2/2) cos(kmx)dx =

∫ L

0

C0 +
∑
n≥1

Cn cos(knx)

 cos(kmx)dx

(2.59)
which shows that

C0 =
1

L

∫ L

0

exp(−(x− 5)2/2)dx ' 0.25066...

Cn =
2

L

∫ L

0

exp(−(x− 5)2/2) cos(knx)dx (2.60)

where here, L = 10. Now, these integrals are not necessarily easy to evaluate
analytically, but they can certainly be calculated numerically, so we can do that
if we wish to compute p(x, t) for any time t > 0. Computing the first few, we
get C1 = 0, C2 = −0.411523.., C3 = 0, C4 = 0.2276.., C5 = 0, C6 = −0.16077..,
C7 = 0, C8 = 0.0213.., C9 = 0 and C10 = −0.0036.. etc.. The solution including
all the modes up to n = 10 is shown in Figure 2.4.

This time, we see that the initial conditions are fairly localized within the
interval, and the initial behavior is actually very similar to what happened in
the infinite domain case: the initial Gaussian splits into two wave packets that
travel in opposite directions. This is not surprising since, for early times, the
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Figure 2.4: Half a period of the solution to the Gaussian initial condition prob-
lem in a finite interval, with c = 1.

pressure wave does not know yet it’s about to encounter boundaries. Later on,
however, each packet hits the boundary, piles up there, reflects, and comes back
towards the center – and so the pattern repeats. We therefore see a little bit of
both behaviors: the solution is indeed a linear combination of standing waves,
but these do also add up to form traveling waves.

This is actually a very general statement. Let’s recall that any standing
wave can actually be represented by 2 counter-propagating waves since

cos(kx) cos(ωt) =
1

2
cos(kx− ωt) +

1

2
cos(kx+ ωt) (2.61)

(and similarly for the product of any two sine and cosine function) so it is in
fact possible to recast equation (2.54) in the form (2.19), although this time the
left-propagating and right-propagating solutions are not expressed as integrals
over all k (as in equation (2.39)), but as an infinite discrete sum instead:

p(x, t) =
1

2

∑
n

Cn cos

(
nπ(x+ ct)

L

)
+ Cn cos

(
nπ(x− ct)

L

)
(2.62)

+Dn sin

(
nπ(x− ct)

L

)
+Dn sin

(
nπ(x+ ct)

L

)
= f(x− ct) + g(x+ ct)

We also have that, to each eigenmode of wavenumber kn = nπ/L corresponds
an eigenfrequency of value ωn = nπc/L = ckn. This recovers the standard
dispersion relation for sound waves. We thus see that the only real difference
between the infinite and finite domain cases is the quantization of the allowable
wavenumbers and frequencies. We will come back to this later. Even so, note
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how as L→∞, the spacing between the wavenumbers (δk = π/L) and between
their corresponding eigenfrequencies (δω = cπ/L) both go to zero – in other
words, although discrete for any strictly finite L, the infinite sum over all modes
does converge in a Riemann sense to the integral expression appropriate in the
case of an infinite domain.

Properties of eigenmodes and eigenfrequencies of Sturm-Liouville prob-
lems

In any case, both examples reveal that the wave field in the tube can be expressed
as a finite or infinite sum of global eigenmodes, each of which is a standing wave
that has a given spatial structure cos(nπx/L), and oscillates with the associated
eigenfrequency ωn = nπc/L. The eigenmodes are global in the sense that they
span the entire acoustic cavity, and obtained by requiring that the sound wave
satisfies the boundary conditions on either side of it. Note how the eigenmodes
and eigenfrequencies are completely independent of the initial conditions applied
– they are an intrinsic property of the tube itself (notably its geometry, and of
the boundary conditions applied), and of the equation that characterizes the
waves. As we have seen in AMS212A, and as we shall see again later, this
statement is also true in 2D and 3D acoustic cavities.

The spatial eigenproblem associated with the 1D wave equation is called a
Sturm-Liouville problem. Many types of 1D wave equations, as long as they are
linear, lead to such Sturm-Liouville problems so there has been a lot of work
done in Applied Mathematics in the last few hundred years to derive general
properties of solutions of these problems. See AMS212A for a comprehensive list,
and for a more formal introduction to Sturm-Liouville theory. However, for our
purposes, there are a few very interesting general properties of the eigenmodes
and eigenfrequencies of these problems (and therefore, by extension, of the wave
equation), that deserve discussion:

• The eigenvalues of Sturm-Liouville problems form an ordered set that has
a smallest eigenvalue, but that does not have a maximum eigenvalue, e.g.
ω0 ≤ ω1 ≤ ω2 ≤ ... < +∞. For regular Sturm-Liouville problems, the set
is actually strictly ordered (i.e. no two eigenvalues are the same).

• The eigenfunction associated with the smallest eigenvalue does not have
a node, i.e. it does not vanish within the domain. It is called the fun-
damental eigenmode. In the case studied here, the fundamental was the
constant function.

• The period of the fundamental mode is usually related to the sound-
crossing time across the cavity. For instance, in the example shown here,
the fundamental mode has a frequency πc/L, so its period is 2π/ω1 =
2c/L, which is the time it takes for the sound to go across the cavity and
back. This is the reason why the larger a music instrument, the lower its
pitch (e.g. compare the typical sound of the bass to that of the violin).
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Figure 2.5: Various eigenmodes of the thin tube problem.

• The eigenfunctions associated with successively higher eigenvalues have
successively more nodes. In the example we saw here, the one associated
with ω1 is the function cos(πx) and has 1 node, the one associated with ω2

is cos(2πx) which has 2 nodes, etc... Hence the larger the eigenfrequency,
the more spatially complex the eigenmode is, as shown in Figure 2.5

Wave reflection, and a physical interpretation of quantization

Mathematically speaking, the emergence of a discrete set of eigenmodes and
eigenfrequencies takes its roots in Sturm-Liouville theory. But physically, why
should this be true? To answer this question, we must first understand what
happens when a wave reflects off the end of the tube.

To model the reflection of a wave, we must consider the total solution near
the wall as the sum of an incoming wave and a reflected wave. If the wall is at
x = 0, and say, the incoming wave is coming from the right, then the pressure
perturbations associated with that incoming wave are

pI(x, t) = <
[
p̂Ie
−i|k|(x+ct)

]
(2.63)

while the reflected wave moves to the right, so

pR(x, t) = <
[
p̂Re

i|k|(x−ct)
]

(2.64)

The total solution is simply p = pI + pR (note that we have assumed here that
the frequency and wavenumber of the incident and reflected waves are the same
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aside from the sign describing the direction of propagation; this will be shown
later in the more general case of reflection in multiple dimensions). To guarantee
that the real part of ∂xp = 0 at x = 0 at all times, we have to have

< [∂xpI(0, t) + ∂xpR(0, t)] = 0→ <
[
−i|k|p̂Ie−i|k|ct + i|k|p̂Re−i|k|ct

]
= 0

(2.65)
A simple way of guaranteeing that this is true at all times is to take p̂R = p̂I ,
or in other words, the amplitude of the incoming wave is simply the same2 as
the amplitude of the outgoing wave so

pR(x, t) = p̂Ie
i|k|(x−ct) (2.66)

Let’s now consider again the question of quantization. Suppose a wave is
generated at a point x0 in the tube, and suppose it travels to the left, reflects
off the wall at x = 0, then reflects off the wall at x = L and comes back to x0
at which point it interferes with itself. Since the phase is given by kx− ωt, the
phase difference between the original and reflected waves at x = x0 is simply
given by

∆θ = kx0 − (kx0 − ωT ) = ωT (2.67)

where T is the time it took for the wave to travel from x0 to the two walls
and back. Since the phase speed is c, that travel time is simply 2cL, hence
∆θ = 2ωcL.

If ∆θ is not a multiple of 2π, the wave interferes destructively with itself.
Indeed, each time the wave bounces, it comes back with a different shifted phase.
Since the sum of an infinite number of oscillatory functions of different phases
adds up to 0, the only way to have a non-zero outcome is to require that ∆θ
be a multiple of 2π. This, in turn, implies that ω cannot take any values, but
instead is restricted to be

ωn =
nπc

L
(2.68)

which is exactly the quantization condition we were looking for.

We therefore see that

• the descriptions of the wave solutions are all consistent with one another.

• it is possible to obtain the spectrum of eigenfrequencies of an acoustic
cavity without calculating its eigenmodes, but simply by calculating the
phase shift due to the travel time of a wave along its path and requiring
that the waves interact constructively.

This second property is particularly useful when we try to calculate eigenfre-
quencies of oscillations of an acoustic cavity in more than 1 dimension, and for
non-constant sound speed.

2Note that had we chosen a different set of boundary conditions at the end of the tube,
as for instance p = 0 instead of ∂xp = 0, then the amplitude of the reflected wave would be
minus that of the incoming one, effectively resulting in a phase shift of π between the two
waves. More on this later.


