Homework 1

January 5, 2016

1 Chapter 1 problems.

1.1 Problem 1: Hydrostatic equilibrium of an isothermal atmosphere

Hydrostatic equilibrium is an equation describing the state of a fluid with no fluid motion, when there is an exact balance between the pressure gradient and the gravitational force, namely

$$
\begin{equation*}
-\nabla p+\rho \boldsymbol{g}=0 \tag{1}
\end{equation*}
$$

Question 1: Express this equation in a Cartesian coordinate system, assuming that the gravity $\boldsymbol{g}=-g \boldsymbol{e}_{z}$.
Question 2: Assume a perfect gas equation of state. Express hydrostatic equilibrium as an equation for the density only. Solve this equation from $z=0$ (the ground) upward, assuming that $\rho=\rho_{0}$ at the ground. Interpret your solution.

1.2 Problem 2: Mass conservation in polar coordinates.

Question 1: Consider the mass conservation equation, and express it in 2D polar coordinate (r, θ).
Question 2: Assume that the velocity field $\boldsymbol{u}=\left(u_{r}, u_{\theta}\right)=\left(u_{0}, 0\right)$, where u_{0} is constant. Sketch this velocity field.

Question 3: Solve the mass conservation equation, assuming that $\rho(r, 0)=r \exp \left(-(r-1)^{2} / 2\right)$. Plot the results, and discuss your findings. Hint: mathematically, it may be easier to consider the function $f(r)=r \rho(r)$.

2 Chapter 2:

2.1 Problem 1: Sound waves with gravity (part 1)

Consider an isothermal atmosphere in a Cartesian coordinate system (see Problem 1 of Chapter 1). Show that the equation for isothermal sound waves in that isothermal atmosphere, this time without neglecting gravity, is

$$
\begin{equation*}
\frac{\partial^{2} \tilde{\rho}}{\partial t^{2}}=c^{2} \nabla^{2} \tilde{\rho}+g \frac{\partial \tilde{\rho}}{\partial z} \tag{2}
\end{equation*}
$$

2.2 Problem 2: Sound waves with gravity (part 2)

Assume 1D monochromatic plane wave solutions to the wave equation derived above, assuming that $\tilde{\rho}$ only varies with z.

- What is the dispersion relation?
- Based on the dispersion relation only, under which circumstances is the term that includes gravity negligible?
- Plug in typical dimensional numbers for g, c, k, etc.. Is gravity typically negligible for isothermal sound waves in air? Are there any circumstances in which it may not be negligible?

2.3 Problem 3: d'Alembert's solution

Does d'Alembert's solution method, or a similar one, work for 1D problems in polar coordinates or in spherical polar coordinates, i.e. for the following wave equations:

$$
\begin{align*}
& \frac{\partial^{2} f}{\partial t^{2}}=c^{2} \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right) \text { in polar coordinates } \\
& \frac{\partial^{2} f}{\partial t^{2}}=c^{2} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right) \text { in spherical polar coordinates } \tag{3}
\end{align*}
$$

If yes, explain the method. If no, explain why it doesn't work.

