Homework 5

Problem 1: Consider the problem

$$
\begin{align*}
& \epsilon f^{\prime \prime}+f^{\prime}+f=0 \text { where } \epsilon<0 \\
& f(0)=e \\
& f(1)=0 \tag{1}
\end{align*}
$$

- Find an exact solution of the problem, and plot it for $\epsilon=-0.1$. Where is the boundary layer, and what is its thickness?
- Find the 1-term expansion of this solution using a multi-scale analysis.
- Find the lowest-order composite expansion of this problem using boundary layer analysis.
- Plot the solutions to the last 2 questions on the same plot as the exact solution. Discuss your findings.

Problem 2: Consider the problem

$$
\begin{align*}
& \epsilon f^{\prime \prime}+f^{\prime}+e^{f}=0 \\
& f(0)=0 \\
& f(1)=1 \tag{2}
\end{align*}
$$

- Using any method of your choice (numerical solution, method of dominant balance, trial and error, ...) determine where the boundary layer is, and what its thickness is.
- Find the 1-term expansion of this solution using a multi-scale analysis.
- Find the lowest-order composite expansion of this problem using boundary layer analysis.
- Plot the solutions to the last 2 questions. Discuss your findings.

