
AMS 212A:  
Partial Differential Equations 

Instructor: Pascale Garaud 



Course information 

  Everything you need to know about the course can be 
found on the course web-site: 

http://www.cse.ucsc.edu/classes/ams212a/Winter11/index.html 



Course information 

  This class will teach you to: 
  Understand the nature of PDEs, and the expected behavior of 

the solutions, simply by inspection. 
  Solve certain classes of PDEs analytically using a range of 

different techniques. 
  Improve your mathematical modeling skills, from the creation 

of a model to the critical analysis of the solutions.  

  This class do not cover numerical solutions of PDEs (see 
AMS213)  

  This class is an applied class and does not address finer 
details of existence of solutions (see MATH classes). 



Examples of PDEs. 

1. The wave equation 



Waves/oscillations 
  The wave equation: 

  Examples:  
  Displacement waves of a string under tension (e.g. guitar string) 
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Waves/oscillations 
  Note that different behaviors are possible:  

  standing waves (oscillations) with different possible modes 
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  Note that different behaviors are possible:  

  standing waves (oscillations) with different possible modes 
  propagating waves, with the possibility of reflections. 



Waves/oscillations 
  Note that different behaviors are possible:  

  standing waves (oscillations) with different possible modes 
  propagating waves, with the possibility of reflections. 

  Other 1D waves include pressure waves (i.e. sound waves or 
seismic waves)  
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Waves/oscillations 



Waves/oscillations 
  2D waves also have similar properties:  

  standing waves (oscillations) with different possible modes 
  propagating waves, with the possibility of reflections. 

  Examples: 
  Small-amplitude waves on the surface of water (gravity waves, 

capillary waves) 
  The vibrations of a surface under tension (e.g. guitar, drum, etc). 
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Waves/oscillations 
  Capillary waves 



Waves/oscillations 



Standing waves in guitar  
excite propagating  
sound waves 

Waves/oscillations 



Waves/oscillations 
  Of course, waves in higher dimensions are also possible:  

  standing waves (oscillations) with different possible modes 
  propagating waves, with the possibility of reflections. 

  Examples: 
  3D seismic waves in the Earth, planets, stars…  
  Electromagnetic waves (light) 
  … 
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Waves/oscillations 
  Note that some other types of waves are not modeled by such 

a simple wave equation.  
  Tsunami waves are perfect examples of weakly nonlinear waves  



Waves/oscillations 
  Note that some other types of waves are not modeled by such 

a simple wave equation.  
  Tsunami waves are perfect examples of weakly nonlinear waves 
  Waves breaking on the beach are very nonlinear – not well-

understood at all actually, at least mathematically. 



Waves/oscillations 
  Note that some other types of waves are not modeled by such 

a simple wave equation.  
  Waves breaking on the beach are very nonlinear – not well-

understood at all actually, at least mathematically. 
  Some surfers understand waves “intuitively” quite well… 



Examples of PDEs. 

2. The diffusion equation 



The diffusion equation 
  The diffusion equation 

  Note:  
  Note that the only difference with the wave equation is that the 

time-derivative is first-order!  

  The most common example is the equation for the diffusion of 
heat (the heat equation):  
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The diffusion equation 
  Because of this, we all have a very good intuition of what 

solutions of the diffusion equation are expected to do… 
  Example:  

  Consider the 1D diffusion equation, with the following boundary 
condition and initial condition: 

  You can guess the behavior of the solution quite easily by recasting 
this into a physical problem you’re more familiar with…  
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The diffusion equation 

€ 

∂T
∂t

= k ∂
2T
∂x 2

T(x,0) = 0      T(0,t) =100   T(L,t) = 0

  Example:  
  Consider the 1D diffusion equation, with the following boundary 

condition and initial condition: 

  This is equivalent to a 1-D metal rod, initially at 0 degree, held at 0 
degree at one end and at 100 degree at the other.  



  Example:  
  Even if the analytical solution is not particularly transparent … 

  YOU still know what it should look like…  

  (IDL Movie) 

The diffusion equation 
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The diffusion equation 
  The diffusion equation is also a continuous way of describing 

the evolution of the probability distribution function of, say, dye 
molecules undergoing random walks caused by collisions with 
water molecules.  
  For a 2D Cartesian box,  
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The diffusion equation 
  The diffusion equation is also a continuous way of describing 

the evolution of the probability distribution function of, say, dye 
molecules undergoing random walks caused by collisions with 
water molecules.  
  For an axially symmetric patch of dye in water, for example,  
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The diffusion equation 
  Typical properties: 

  Diffusion “smoothes out” all sharp edges 
  The infinite-time evolution of the diffusion process is the smoothest 

possible function satisfying the boundary conditions. 

  Case of rod: linear function. 
  Case of dye patch and 2-species diffusion in a finite-size box?  

  Constant functions. 



(not) The diffusion equation 
  Important note:  

  The diffusion must not be mixed up with the transport equation:  

  where u is the transport velocity field “transporting” the 
quantity f.  
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Diffusion vs transport. 
  Important note:  

  The diffusion must not be mixed up with the transport equation:  

  where u is the transport velocity field “transporting” the 
quantity f.  

  See how the transport equation does not smooth out the 
function f, it merely mixes it around. 

  In addition, the transport equation is time-reversible, while the 
diffusion equation is not… 
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Diffusion vs transport. 



Examples of PDEs. 

3. Laplace’s equation 



Laplace’s equation 

  Laplace’s equation: 

  Note:  
  This equation can be thought of as the “end-product” of a diffusion 

process, when the system has reached a steady state. 

  So the solutions are always the “smoothest possible functions” which 
satisfy the boundary conditions…   
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Laplace’s equation 

  Laplace’s equation on a square plate: 

  with boundary conditions 
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Laplace’s equation 

  Laplace’s equation on a square plate: 

  with boundary conditions 
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Laplace’s equation 
  Thinking of Laplace’s equation as the “end-product” of a 

diffusion equation will also help you “guess” the solution..  
  Example: 

  What is the solution of  

  with boundary condition  
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Laplace’s equation 
  Thinking of Laplace’s equation as the “end-product” of a 

diffusion equation will also help you “guess” the solution..  
  Example: 

  What is the solution of  

  with boundary condition  

  Well, that’s the Laplace equation on a sphere, i.e. the steady-state 
equilibrium of a sphere where the “temperature” f is held constant 
on the surface (r=1) and at f=10 for all times… so: 
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