AMS 212A:
 Partial Differential Equations

Instructor: Pascale Garaud

Course information

- Everything you need to know about the course can be found on the course web-site:
http://www.cse.ucsc.edu/classes/ams2|2a/Winter I I/index.html

Course information

- This class will teach you to:
- Understand the nature of PDEs, and the expected behavior of the solutions, simply by inspection.
- Solve certain classes of PDEs analytically using a range of different techniques.
- Improve your mathematical modeling skills, from the creation of a model to the critical analysis of the solutions.
- This class do not cover numerical solutions of PDEs (see AMS2I3)
- This class is an applied class and does not address finer details of existence of solutions (see MATH classes).

Examples of PDEs.

1. The wave equation

Waves / oscillations

- The wave equation:

$$
\frac{\partial^{2} f}{\partial t^{2}}=\underset{c^{2} \nabla^{2} f}{ } \text { Wave speed square }
$$

- Examples:
* Displacement waves of a string under tension (e.g. guitar string)

$$
\frac{\partial^{2} h}{\partial t^{2}}=c^{2} \frac{\partial^{2} h}{\partial x^{2}}
$$

$h(x, t)$

Waves / oscillations

- Note that different behaviors are possible:
» standing waves (oscillations) with different possible modes

Waves / oscillations

- Note that different behaviors are possible:
b standing waves (oscillations) with different possible modes
- propagating waves, with the possibility of reflections.

Waves / oscillations

- Note that different behaviors are possible:
> standing waves (oscillations) with different possible modes
- propagating waves, with the possibility of reflections.
- Other ID waves include pressure waves (i.e. sound waves or seismic waves)

$$
\frac{\partial^{2} p}{\partial t^{2}}=c^{2} \frac{\partial^{2} p}{\partial x^{2}}
$$

Waves/oscillations

$$
\begin{aligned}
& \text { Longitudinal Wave }
\end{aligned}
$$

Waves / oscillations

- 2D waves also have similar properties:
- standing waves (oscillations) with different possible modes
- propagating waves, with the possibility of reflections.

$$
\frac{\partial^{2} h}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} h}{\partial x^{2}}+\frac{\partial^{2} h}{\partial y^{2}}\right)
$$

- Examples:
- Small-amplitude waves on the surface of water (gravity waves, capillary waves)
- The vibrations of a surface under tension (e.g. guitar, drum, etc).

Waves/oscillations

- Capillary waves

Waves/oscillations

Waves/oscillations

Waves / oscillations

- Of course, waves in higher dimensions are also possible:
b standing waves (oscillations) with different possible modes
- propagating waves, with the possibility of reflections.

$$
\frac{\partial^{2} h}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} h}{\partial x^{2}}+\frac{\partial^{2} h}{\partial y^{2}}+\frac{\partial^{2} h}{\partial z^{2}}\right)
$$

- Examples:
- 3D seismic waves in the Earth, planets, stars...
- Electromagnetic waves (light)

Waves / oscillations

- Note that some other types of waves are not modeled by such a simple wave equation.
- Tsunami waves are perfect examples of weakly nonlinear waves

Waves / oscillations

- Note that some other types of waves are not modeled by such a simple wave equation.
- Tsunami waves are perfect examples of weakly nonlinear waves
- Waves breaking on the beach are very nonlinear - not wellunderstood at all actually, at least mathematically.

Waves / oscillations

- Note that some other types of waves are not modeled by such a simple wave equation.
- Waves breaking on the beach are very nonlinear - not wellunderstood at all actually, at least mathematically.
* Some surfers understand waves "intuitively" quite well...

Examples of PDEs.

\square
2. The diffusion equation

The diffusion equation

- The diffusion equation

$$
\frac{\partial f}{\partial t}=\underset{\uparrow}{k \nabla^{2} f} \text { Diffusivity }
$$

, Note:

- Note that the only difference with the wave equation is that the time-derivative is first-order!
- The most common example is the equation for the diffusion of heat (the heat equation):

$$
\frac{\partial T}{\partial t}=k \nabla^{2} T
$$

The diffusion equation

- Because of this, we all have a very good intuition of what solutions of the diffusion equation are expected to do...
- Example:
- Consider the ID diffusion equation, with the following boundary condition and initial condition:

$$
\begin{aligned}
& \frac{\partial T}{\partial t}=k \frac{\partial^{2} T}{\partial x^{2}} \\
& T(x, 0)=0 \quad T(0, t)=100 \quad T(L, t)=0
\end{aligned}
$$

- You can guess the behavior of the solution quite easily by recasting this into a physical problem you're more familiar with...

The diffusion equation

- Example:

- Consider the ID diffusion equation, with the following boundary condition and initial condition:

$$
\begin{aligned}
& \frac{\partial T}{\partial t}=k \frac{\partial^{2} T}{\partial x^{2}} \\
& T(x, 0)=0 \quad T(0, t)=100 \quad T(L, t)=0
\end{aligned}
$$

- This is equivalent to a I-D metal rod, initially at 0 degree, held at 0 degree at one end and at 100 degree at the other.

The diffusion equation

- Example:

- Even if the analytical solution is not particularly transparent ...

$$
T(x, t)=100\left(1-\frac{x}{L}\right)-\sum_{n} \frac{200}{n \pi} \cos (n \pi) \sin \left(\frac{n \pi x}{L}\right) e^{-\frac{n^{2} \pi^{2}}{L^{2}} k t}
$$

b YOU still know what it should look like...

- (IDL Movie)

The diffusion equation

- The diffusion equation is also a continuous way of describing the evolution of the probability distribution function of, say, dye molecules undergoing random walks caused by collisions with water molecules.
- For a 2D Cartesian box,

$$
\frac{\partial T}{\partial t}=k\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}\right)
$$

The diffusion equation

- The diffusion equation is also a continuous way of describing the evolution of the probability distribution function of, say, dye molecules undergoing random walks caused by collisions with water molecules.
- For an axially symmetric patch of dye in water, for example,

$$
\frac{\partial T}{\partial t}=\frac{k}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)
$$

The diffusion equation

- Typical properties:
" Diffusion "smoothes out" all sharp edges
- The infinite-time evolution of the diffusion process is the smoothest possible function satisfying the boundary conditions.
- Case of rod: linear function.
- Case of dye patch and 2-species diffusion in a finite-size box?
- Constant functions.

(not) The diffusion equation

- Important note:
- The diffusion must not be mixed up with the transport equation:

$$
\frac{\partial f}{\partial t}=-\nabla \cdot(u f)
$$

" where u is the transport velocity field "transporting" the quantity f.

Diffusion vs transport.

- Important note:
- The diffusion must not be mixed up with the transport equation:

$$
\frac{\partial f}{\partial t}=-\nabla \cdot(u f)
$$

" where u is the transport velocity field "transporting" the quantity f.

- See how the transport equation does not smooth out the function f, it merely mixes it around.
- In addition, the transport equation is time-reversible, while the diffusion equation is not...

Diffusion vs transport.

Examples of PDEs.

Laplace's equation

- Laplace's equation:

$$
\nabla^{2} f=0
$$

- Note:
- This equation can be thought of as the "end-product" of a diffusion process, when the system has reached a steady state.

$$
\frac{\partial f}{\partial t}=k \nabla^{2} f \text { when } \frac{\partial}{\partial t} \rightarrow 0
$$

- So the solutions are always the "smoothest possible functions" which satisfy the boundary conditions...

Laplace's equation

- Laplace's equation on a square plate:

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

- with boundary conditions

$$
\begin{aligned}
& f(0, y)=\sin (\pi y), f(1, y)=0 \\
& f(x, 0)=f(x, 1)=0
\end{aligned}
$$

Laplace's equation

- Laplace's equation on a square plate:

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

- with boundary conditions

$$
\begin{aligned}
& f(0, y)=\sin (\pi y), f(1, y)=0 \\
& f(x, 0)=f(x, 1)=0
\end{aligned}
$$

Laplace's equation

- Thinking of Laplace's equation as the "end-product" of a diffusion equation will also help you "guess" the solution..
- Example:
- What is the solution of

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \phi^{2}}=0
$$

- with boundary condition

$$
f(1, \theta, \phi)=10
$$

Laplace's equation

- Thinking of Laplace's equation as the "end-product" of a diffusion equation will also help you "guess" the solution..
- Example:
- What is the solution of

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \phi^{2}}=0
$$

- with boundary condition

$$
f(1, \theta, \phi)=10
$$

* Well, that's the Laplace equation on a sphere, i.e. the steady-state equilibrium of a sphere where the "temperature" f is held constant on the surface $(r=I)$ and at $f=10$ for all times... so:

$$
f(r, \theta, \phi)=10
$$

