## Take Home Midterm 2013

## Problem 1:

A 1D advection-diffusion equation is of the form

$$
\frac{\partial u}{\partial t}+v \frac{\partial u}{\partial x}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

(a) Solve this equation on the interval $x \in[-10,10]$ with initial and boundary conditions:

$$
\begin{aligned}
& u(-10, t)=u(10, t)=0 \\
& u(x, 0)=e^{-x^{2} / 2}-e^{-50}
\end{aligned}
$$

(b) Plot the solution for $t=0,1,2,3,4,5$ for the 3 following cases:

- $v=0, k=1$
- $v=1, k=0$
- $v=1, k=1$
(c) Search online or in textbooks for the term "advection-diffusion" and describe in words how the behavior of your solutions fits with the online descriptions you found. What kind of physical problem could this correspond to?


## Problem 2:

Your instructor is currently writing a paper (Oglethorpe, Garaud and Wood, in prep) in which she has to study the following problem. On the interval $z \in(0, H)$, we have

$$
\begin{equation*}
\frac{\partial v}{\partial t}+\left(\frac{2 \Omega(t) R}{N \lambda}\right)^{2} \kappa \frac{\partial^{4} v}{\partial z^{4}}-\left(\frac{2 \Omega(t)}{N}\right)^{2} \kappa \frac{\partial^{2} v}{\partial z^{2}}=0 \tag{1}
\end{equation*}
$$

where $\Omega(t)=\Omega_{0}\left(\frac{t}{t_{0}}\right)^{-1 / 2}$, and where $N, \lambda, R, \kappa, \Omega_{0}$ and $t_{0}$ are just constants. The boundary conditions on $v(z, t)$ are:

$$
\begin{array}{r}
\frac{\partial v}{\partial z}(0, t)=0 \text { and } \frac{\partial^{3} v}{\partial z^{3}}(0, t)=0 \\
\frac{\partial v}{\partial z}(H, t)=0 \text { and } v(H, t)=K \frac{\partial^{3} v}{\partial z^{3}}(H, t)
\end{array}
$$

where $K$ is a positive constant. The initial conditions are arbitrary, so that

$$
v\left(z, t_{0}\right)=v_{0}(z)
$$

The paper contains the following statements. For each point marked $\left({ }^{* *} N^{* *}\right)$ where $N=1 . .10$, prove the corresponding statement and/or perform the required calculation.
"To solve Equation (1), we note that it is separable in $z$ and $t$, and write

$$
v(z, t)=\sum_{n} V_{n}(t) Z_{n}(z)
$$

where the vertical modes $Z_{n}(z)$ satisfy

$$
\begin{equation*}
\mathcal{L}\left(Z_{n}\right) \equiv \frac{d^{4} Z_{n}}{d z^{4}}-\frac{\lambda^{2}}{R^{2}} \frac{d^{2} Z_{n}}{d z^{2}}=\left(\frac{\mu_{n}}{R^{2}}\right)^{2} Z_{n}\left({ }^{* *} 1^{* *}\right) \tag{2}
\end{equation*}
$$

We see that the boundary conditions on the eigenfunctions are homogeneous (**の**). It can easily be shown that the operator $\mathcal{L}$ on the left-hand-side of (2) is symmetric (**3**) with these boundary conditions, which then implies that the vertical eigenmodes are orthogonal, with

$$
\int_{0}^{H} Z_{n}(z) Z_{m}(z) d z=\delta_{n m} \int_{0}^{H} Z_{n}^{2}(z) d z \cdot\left({ }^{* *} 4^{* *}\right)
$$

It can also be shown by considering the integral $\int_{0}^{H} Z_{n} \mathcal{L}\left(Z_{n}\right) d z$, suitably integrating it by parts, and applying the boundary conditions, that the eigenvalues associated with the operator $\mathcal{L}$ and our boundary conditions must be strictly positive ( ${ }^{* *} 5^{* *}$ ), hence our choice of writing them as $\left(\mu_{n} / R^{2}\right)^{2}$ in Equation (2).

Since (2) is an equation with constant coefficients, we seek solutions of the form $e^{\sigma_{n} z}$ and find four solutions for $\sigma_{n}: \pm \sigma_{1, n}$ and $\pm i \sigma_{2, n}$, where

$$
\sigma_{1, n}=\frac{1}{R}\left[\sqrt{\mu_{n}^{2}+\frac{\lambda^{4}}{4}}+\frac{\lambda^{2}}{2}\right]^{1 / 2}, \sigma_{2, n}=\frac{1}{R}\left[\sqrt{\mu_{n}^{2}+\frac{\lambda^{4}}{4}}-\frac{\lambda^{2}}{2}\right]^{1 / 2} \cdot\left({ }^{* *} 6^{* *}\right)
$$

Applying the boundary conditions we then have

$$
Z_{n}(z)=\frac{\sigma_{2, n}}{\sigma_{1, n}} \frac{\sin \left(\sigma_{2, n} H\right)}{\sinh \left(\sigma_{1, n} H\right)} \cosh \left(\sigma_{1, n}(z)\right)+\cos \left(\sigma_{2, n}(z)\right), \quad\left(* * \gamma^{* *}\right)
$$

while the $\mu_{n}$ coefficients satisfy: ( ${ }^{* *} 8^{* *}$ : write the equation that the $\mu_{n}$ coefficients satisfy).
Projecting (1) onto the $Z_{n}$ functions gives ( ${ }^{* *} g^{* *}$ : prove the equation below and write what is $\tau_{n}(t)$ in terms of all the other parameters introduced )

$$
\frac{d V_{n}}{d t}+\frac{V_{n}}{\tau_{n}(t)}=0
$$

Solving this equation, using the solution to reconstruct $v(z, t)$, and applying initial conditions finally yields (**10**: write the complete formal solution). "

## Problem 3:

What are the eigenfrequencies of a rectangular drum of size $H \times L$, assuming that the wave-speed of the drum is $c$ ? Justify all the steps of your calculation very carefully.

