Homework 3

Problem 1: Quasilinear equation. Find the solution of the PDE

$$
\begin{aligned}
& x u u_{x}+y u u_{y}=u^{2}-1 \\
& u\left(x, x^{2}\right)=x^{3} \text { for } x>0
\end{aligned}
$$

and discuss (using the transversality condition) what happens at $x=0$.
Problem 2: Traffic flow

- Complete the lecture notes by looking at the traffic flow problem with an initial velocity profile with $\frac{U_{\max }}{2}<u(x, 0)<U_{\max }$.
- Invent another possible flux law for the traffic flow (i.e. propose a new $V(N)$) and discuss the behavior of the solutions.

Problem 3:

Consider Euler's equation

$$
\begin{array}{r}
u_{t}+u u_{x}=0 \\
u(x, 0)=x \text { for } x>0 \\
u(x, 0)=0 \text { for } x \leq 0 \tag{1}
\end{array}
$$

- What are the characteristic equations? Draw the characteristics.
- Find the solution $u(x, t)$?
- What is the domain of definition of the function? Where is the function continuous? Differentiable?

Now consider, for all times $t \geq 0$,

$$
\begin{array}{r}
u_{t}+u u_{x}=0 \\
u(x, 0)=0 \text { for } x \geq 1 \\
u(x, 0)=x \text { for } x \in(0,1) \\
u(x, 0)=0 \text { for } x \leq 0 \tag{2}
\end{array}
$$

- What are the characteristic equations? Draw the characteristics.
- Why does this solution involve a shock? Where/when does the shock begin?
- What is the equation governing the shock propagation? Solve this equation and determine the shock front $x=\gamma(t)$.
- Complete the problem by drawing the shock front on the (x, t) plane, and the characteristics. Write the solution $u(x, t)$ for all x, for $t>0$.

Problem 4:

Consider the problem

$$
\begin{array}{r}
u_{t}+t u u_{x}=0 \\
u(x, 0)=\sin (x) \text { for all } x
\end{array}
$$

- What are the characteristic equations? Draw the characteristics.
- By considering intersecting characteristics, show that the shock fronts occur at $t_{c}=\sqrt{2}$ and $x_{c}=$ $\pi+2 k \pi$ for all integer values of k.
- Solve the problem for $t \in\left[0, t_{c}\right)$. (Note: you can leave the solution in an implicit form).
- Now realize that there exists an easy change of variable that will transform this equation into a conservative system for $t>0$. What is it?
- By symmetry arguments, or otherwise, show that the shock fronts satisfy the equation $\mathrm{d} \gamma / \mathrm{d} t=$, and therefore complete the problem by giving a solution valid at all times. (Note: you can leave the solution in an implicit form).

Problem 5: Method of characteristics for multi-dimensional first-order PDEs.
Solve the two-dimensional transport equation:

$$
\begin{array}{r}
u_{t}+c_{1} u_{x}+c_{2} u_{y}+\alpha u=0 \\
u(x, y, 0)=u_{0}(x, y) \text { for all } x, y
\end{array}
$$

where c_{1} and c_{2} are constants.
Problem 6: Application to information flow
Problems 7.1-7.7 in Phone Lines handout

