Homework 2

- Solve the PDE

$$
\begin{aligned}
& u_{t}+v_{0} u_{x}=0 \\
& u(x, 0)=e^{-x^{2} / 2}
\end{aligned}
$$

What is the integral of $u(x, t)$ over the real axis (from $x=-\infty$ to $x=+\infty$)? Why is it constant?

- Solve the PDE

$$
\begin{aligned}
& u_{t}+x u_{x}=-u \\
& u(x, 0)=e^{-x^{2} / 2}
\end{aligned}
$$

- Solve the PDE

$$
\begin{aligned}
& u_{t}+x u_{x}=e^{u} \\
& u(x, 0)=x^{2}
\end{aligned}
$$

- Textbook exercises on linear and semilinear equations: (page 58-59) 2.1, 2.2, 2.3, 2.4, 2.7
- Textbook exercises on quasilinear equations: (page 60-61) 2.12, 2.16, 2.17

