Final

Instructions:

- All problems are worth the same number of points. Attempt as many as you can.
- Calculators are allowed but shouldn't be necessary.
- MAKE SURE YOUR NAME IS ON THE FIRST PAGE OF YOUR ANSWERS, AND YOUR INITIALS ON ALL OTHER PAGES
- The instructor reserves the right not to grade any illegible answers.
- Note: solving 3 out of the 4 problems completely and correctly will garantee an A^{+}.
- RELAX, AND GOOD LUCK!

Problem 1: This problem is aimed at finding the equilibrium temperature profile within a spherical cavity. We consider a region bounded by two concentric spheres of radius a and b respectively (with $a<b)$. We use a spherical coordinate system (r, θ, ϕ). The temperature on the inner sphere is held at a constant value T_{0}

$$
\begin{equation*}
T(a, \theta, \phi)=T_{0} \tag{1}
\end{equation*}
$$

while the temperature on the outer sphere is

$$
\begin{equation*}
T(b, \theta, \phi)=T_{1}+T_{2} \cos (\theta) \tag{2}
\end{equation*}
$$

The steady-state temperature profile is obtained by solving

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial T}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial T}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} T}{\partial \phi^{2}}=0 \tag{3}
\end{equation*}
$$

subject to the boundary conditions required.

- Verify that the functions $v_{0}(\theta)=1$ and $v_{1}(\theta)=\cos \theta$ are eigen-solutions of the equation

$$
\begin{equation*}
\frac{1}{\sin \theta} \frac{\mathrm{~d}}{\mathrm{~d} \theta}\left(\sin \theta \frac{\mathrm{~d} v_{i}}{\mathrm{~d} \theta}\right)=-\lambda_{i} v_{i} \tag{4}
\end{equation*}
$$

and find the corresponding eigenvalues λ_{0} and λ_{1}.

- Fully justify that the solution to the problem can be written as

$$
\begin{equation*}
T(r, \theta, \phi)=f_{0}(r)+f_{1}(r) \cos \theta \tag{5}
\end{equation*}
$$

where $f_{0}(r)$ and $f_{1}(r)$ satisfy (for $i=0$ or $i=1$)

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r^{2} \frac{\mathrm{~d} f_{i}}{\mathrm{~d} r}\right)-\frac{\lambda_{i}}{r^{2}} f_{i}=0 \tag{6}
\end{equation*}
$$

- Solve the equations for $f_{0}(r)$ and $f_{1}(r)$ and identify the arbitrary constants that will need to be determined from the boundary conditions. (Hint: seek solutions in r^{α}).
- By applying the boundary conditions, find $T(r, \theta, \phi)$.

Problem 2: Solve the problem

$$
\begin{aligned}
& u_{t}-k u_{x x}=t \sin \left(\frac{3 \pi x}{L}\right), \quad 0<x<L, t>0 \\
& u(x, 0)=0, \quad 0<x<L \\
& u(0, t)=u(L, t)=0
\end{aligned}
$$

Problem 3: We consider a circular drum of radius R oscillating according to the wave equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}\right] \tag{7}
\end{equation*}
$$

where c is a constant, and (r, θ) are the standard plane-polar coordinates. The boundary conditions near the outer rim of the drum are such that $u(R, t)=0$, and regularity conditions are required at the origin $(r=0)$. We seek to find all the possible eigenmodes and eigenfrequencies of the drum.

- Find the general solution of the problem (irrespective of initial conditions).
- Let $\left\{z_{n m}\right\}_{m=0 . . \infty}$ be the ensemble of all the roots of $J_{n}(x)$ (i.e. $J_{n}\left(z_{n m}\right)=0$). Given that the frequency of oscillation ν of the periodic function $\sin (\omega t)($ or $\cos (\omega t))$ is $\nu=2 \pi / \omega$, what are all of the possible eigen-frequencies of the drum?
- The nodal lines of an eigenmode are lines where the eigenmode is zero. Sketch the nodal lines of $\sin (2 \theta) J_{2}\left(z_{22} \frac{r}{R}\right)$.

Note: you may need the following information on Bessel functions:

- The Bessel equation

$$
\begin{equation*}
x^{2} f_{x x}+x f_{x}+\left(x^{2}-n^{2}\right) f=0 \tag{8}
\end{equation*}
$$

has the general solution $f(x)=a J_{n}(x)+b Y_{n}(x)$ where the functions $J_{n}(x)$ and $Y_{n}(x)$ are Bessel functions of the first and second kind respectively. Note that $J_{n}(x)$ is regular at $x=0$ while $Y_{n}(x)$ is singular.

- Here is an annotated plot of $J_{2}(x)$:

Problem 4: We consider a square metallic plate constantly heated from its surface and cooling at the sides. The length of each side is unity. The equation for the steady-state temperature profile of the plate is given by

$$
\begin{equation*}
\nabla^{2} T=H(x, y) \tag{9}
\end{equation*}
$$

where $H(x, y)$ is the spatially varying heating term, and ∇^{2} is the two-dimensional Laplacian in Cartesian coordinates. The boundary conditions are simply $T(0, y)=T(1, y)=T(x, 0)=T(x, 1)=0$, and you may assume that $H(0, y)=H(1, y)=H(x, 0)=H(x, 1)=0$ as well.

- Show that the solution to the problem can be written as

$$
\begin{equation*}
T(x, y)=\sum_{n} \sum_{m} a_{m n} \sin (m \pi x) \sin (n \pi y) \tag{10}
\end{equation*}
$$

where you need to express the coefficients $a_{m n}$ in terms of the heating function $H(x, y)$.

- If we re-wrote the solution as

$$
\begin{equation*}
T(x, y)=\int_{x^{\prime}=0}^{x^{\prime}=1} \int_{y^{\prime}=0}^{y^{\prime}=1} G\left(x, y ; x^{\prime}, y^{\prime}\right) H\left(x^{\prime}, y^{\prime}\right) \mathrm{d} x^{\prime} \mathrm{d} y^{\prime} \tag{11}
\end{equation*}
$$

what is the name of the function G and what is its exact expression?

- Solve the problem when $H(x, y)=\sin ^{2}(\pi x) \sin ^{2}(\pi y)$.

