NST PART 1A Mathematics III: course A Examples Sheet 2, Easter Term 2004

Corrections and comments may be sent by email to hm11@damtp.cam.ac.uk

- 1. Show that the functions $1, x, \frac{1}{2}(3x^2-1), \frac{1}{2}(5x^3-3x)$ are orthogonal on the interval [-1, 1].
- 2. Without resorting to integration, write down the Fourier series on $(-\pi, \pi)$ (with period 2π) for (i) $\sin 2\theta$ and (ii) $\cos^2 \theta$. Obtain also the Fourier series for $\sin^3 \theta$.
- **3.** Say whether each one of the following functions of x are even, odd or neither:

 $\cos x$, $\sin x$, $\tan x$, $\cos^2 x$, $\sin^2 x$, $x \cos x$, e^x , $\frac{(x-1)}{(x+1)}$.

Given an arbitrary function f(x), show that

$$F(x) = \frac{1}{2}(f(x) + f(-x)), \qquad G(x) = \frac{1}{2}(f(x) - f(-x)),$$

are respectively even and odd. Thus

$$f(x) = F(x) + G(x),$$

is the resolution of f(x) into its even and odd parts. Perform this resolution for the functions in the previous list for which the answer neither was given.

- 4. A function g(x) of period 2 is defined for -1 < x < 1 by g(x) = x + |x|, and by periodicity for all other x. Sketch this function, and without resorting to integation, instead using results given in lectures, write down its Fourier series.
- 5. Prove by integrating by parts that

$$\int_0^1 x^2 \cos(n\pi x) dx = \frac{2(-)^n}{n^2 \pi^2}.$$

6. An even function is defined by $f(x) = x^2$ for $-1 \le x \le 1$, and by periodicity elsewhere. Use the result of the previous question to show that it has the Fourier series

$$f(x) = \frac{1}{3} + \sum_{n=1}^{\infty} \frac{4(-)^n}{n^2 \pi^2} \cos(n\pi x).$$

Show (by putting x = 1) that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{6}\pi^2$$

7. Let $f(x) = \sum_{n=1}^{\infty} b_n \sin n\pi x$ and $g(x) = \sum_{n=1}^{\infty} B_n \sin n\pi x$. show that

$$\int_{-1}^{1} f(x)g(x)dx = \sum_{n=1}^{\infty} b_n B_n.$$

What is the corresponding result when

$$f(x) = g(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos n\pi x.$$

8. If $f(x) = g(x) = x^2$, combine the results of question six and the last result of question seven to deduce the result

$$\frac{\pi^4}{90} = \sum_{n=1}^{\infty} \frac{1}{n^4}.$$

9. (Harder question?) A function is defined by $f(x) = \cos x$ for $0 < x < \pi$, by $f(x) = -\cos x$ for $-\pi \le x \le 0$, and by periodicity elsewhere. Sketch this odd function carefully, and show that it has the Fourier sine series

$$f(x) = \sum_{n \text{ even}} \frac{4n}{\pi(n^2 - 1)} \sin nx = \sum_{r=1}^{\infty} \frac{8r}{\pi(4r^2 - 1)} \sin 2rx$$

How do you interpret this result for x = 0?

(This question has found a half-range sine series for the function $f(x) = \cos x$ defined for $0 \le x \le 1$.)