Corrections and comments may be sent by email to hm11@damtp.cam.ac.uk

1. Show that the functions $1, x, \frac{1}{2}\left(3 x^{2}-1\right), \frac{1}{2}\left(5 x^{3}-3 x\right)$ are orthogonal on the interval $[-1,1]$.
2. Without resorting to integration, write down the Fourier series on $(-\pi, \pi)$ (with period 2π) for (i) $\sin 2 \theta$ and (ii) $\cos ^{2} \theta$. Obtain also the Fourier series for $\sin ^{3} \theta$.
3. Say whether each one of the following functions of x are even, odd or neither:

$$
\cos x, \quad \sin x, \quad \tan x, \quad \cos ^{2} x, \quad \sin ^{2} x, \quad x \cos x, \quad e^{x}, \quad \frac{(x-1)}{(x+1)}
$$

Given an arbitrary funtion $f(x)$, show that

$$
F(x)=\frac{1}{2}(f(x)+f(-x)), \quad G(x)=\frac{1}{2}(f(x)-f(-x)),
$$

are respectively even and odd. Thus

$$
f(x)=F(x)+G(x),
$$

is the resolution of $f(x)$ into its even and odd parts. Perform this resolution for the functions in the previous list for which the answer neither was given.
4. A function $g(x)$ of period 2 is defined for $-1<x<1$ by $g(x)=x+|x|$, and by periodicity for all other x. Sketch this function, and without resorting to integation, instead using results given in lectures, write down its Fourier series.
5. Prove by integrating by parts that

$$
\int_{0}^{1} x^{2} \cos (n \pi x) d x=\frac{2(-)^{n}}{n^{2} \pi^{2}}
$$

6. An even function is defined by $f(x)=x^{2}$ for $-1 \leq x \leq 1$, and by periodicity elsewhere. Use the result of the previous question to show that it has the Fourier series

$$
f(x)=\frac{1}{3}+\sum_{n=1}^{\infty} \frac{4(-)^{n}}{n^{2} \pi^{2}} \cos (n \pi x)
$$

Show (by putting $x=1$) that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{1}{6} \pi^{2}
$$

7. Let $f(x)=\sum_{n=1}^{\infty} b_{n} \sin n \pi x$ and $g(x)=\sum_{n=1}^{\infty} B_{n} \sin n \pi x$. show that

$$
\int_{-1}^{1} f(x) g(x) d x=\sum_{n=1}^{\infty} b_{n} B_{n} .
$$

What is the corresponding result when

$$
f(x)=g(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n \pi x .
$$

8. If $f(x)=g(x)=x^{2}$, combine the results of question six and the last result of question seven to deduce the result

$$
\frac{\pi^{4}}{90}=\sum_{n=1}^{\infty} \frac{1}{n^{4}}
$$

9. (Harder question?) A function is defined by $f(x)=\cos x$ for $0<x<\pi$, by $f(x)=$ $-\cos x$ for $-\pi \leq x \leq 0$, and by periodicity elsewhere. Sketch this odd function carefully, and show that it has the Fourier sine series

$$
f(x)=\sum_{n \text { even }} \frac{4 n}{\pi\left(n^{2}-1\right)} \sin n x=\sum_{r=1}^{\infty} \frac{8 r}{\pi\left(4 r^{2}-1\right)} \sin 2 r x
$$

How do you interpret this result for $x=0$?
(This question has found a half-range sine series for the function $f(x)=\cos x$ defined for $0 \leq x \leq 1$.)

