Handout: Summary of AMS 3 formulas

All formula with an asterisk must be known by heart. All others are optional and will be given to you in exams if required.

1 Lines, circles and points

The equation of a line with slope s and y-intercept b is

$$y = f(x) = sx + b \tag{*}$$

If the line goes through 2 points A and B with coordinates (x_A, y_A) and (x_B, y_B) then

$$s = \frac{y_B - y_A}{x_B - x_A} \tag{*}$$

The distance between two points $A(x_A, y_A)$ and $B(x_B, y_B)$ is

$$d = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2} \tag{*}$$

The equation of a circle of radius R centered on $A(x_A, y_A)$ is

$$(x - x_A)^2 + (y - y_A)^2 = R^2 \tag{*}$$

2 Quadratic equations

$$y = f(x) = ax^2 + bx + c$$
 (*)

The graph of y = f(x) is a parabola. It has a minimum (i.e. parabola opens upwards) if a > 0. It has a maximum (i.e. parabola opens downwards) if a < 0. The minimum/maximum is at the location x_m with

$$x_m = -\frac{b}{2a} \tag{*}$$

It has roots (i.e it intersects the x-axis) when y = f(x) = 0. The solutions to this equation depends on the value of D:

$$D = b^2 - 4ac \qquad (*) \tag{7}$$

- if D < 0 there are no solutions. The parabola does not intercept the x-axis. The function $f(x) = ax^2 + bx + c$ cannot be factored.
- if D=0 there is one solution. The parabola just touches the x-axis at the point

$$x_1 = x_m = -\frac{b}{2a} \qquad (*)$$

The function $f(x) = ax^2 + bx + c$ is factored as

$$f(x) = a(x - x_1)^2 (*)$$

• if D > 0 there are two solutions. The parabola intercepts the x-axis in the two points

$$x_1 = \frac{-b - \sqrt{D}}{2a} , x_2 = \frac{-b + \sqrt{D}}{2a}$$
 (*)

The function $f(x) = ax^2 + bx + c$ is factored as

$$f(x) = a(x - x_1)(x - x_2) \tag{*}$$

3 Polynomial functions

$$y = f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \tag{*}$$

 a_n is the leading coefficient, n is the order of the polynomial.

The factored form of f is

$$f(x) = a_n(x - x_1)(x - x_2)(x - x_3)\dots(x - x_m)q(x) \tag{*}$$

where x_i are all possible solutions to f(x) = 0 and q(x) is a polynomial of order n - m, leading coefficient 1, with no roots $(q(x) \neq 0)$.

4 Rational functions

$$y = f(x) = \frac{p(x)}{q(x)} \tag{*}$$

where p(x) and q(x) are polynomial functions.

The roots of p(x) are the roots of f(x). The roots of q(x) are the asymptotes of f(x).

5 Power functions

$$y = f(x) = x^a \tag{*}$$

Properties:

$$x^{a+b} = x^a x^b \tag{16}$$

$$x^{-a} = \frac{1}{x^a} (*)$$

$$x^{a-b} = \frac{x^a}{x^b} \tag{*}$$

$$x^{ab} = (x^a)^b = (x^b)^a \tag{*}$$

6 Exponential functions

Exponential in base a:

$$y = f(x) = a^x \text{ with } a > 0 \tag{*}$$

Natural exponential (exponential in base e with e = 2.71828...):

$$y = f(x) = e^x = \exp(x) \tag{*}$$

Properties of all exponential functions:

$$a^{x+z} = a^x a^z \tag{*}$$

$$a^{-x} = \frac{1}{a^x} \tag{*}$$

$$a^{-x} = \frac{1}{a^{x}} \qquad (*) \qquad (23)$$

$$a^{x-z} = \frac{a^{x}}{a^{z}} \qquad (*) \qquad (24)$$

$$a^{xz} = (a^{x})^{z} = (a^{z})^{x} \qquad (*) \qquad (25)$$

$$a^{xz} = (a^x)^z = (a^z)^x \tag{*}$$

Logarithmic functions

Logarithm in base a is the inverse of the exponential in base a:

$$y = \log_a(x)$$
 is equivalent to $x = a^y$ (*)

Natural logarithm (logarithm in base e) is the inverse of the natural logarithm:

$$y = \log_e(x) = \ln(x)$$
 is equivalent to $x = e^y$ (*)

Inverse relations:

$$\log_a(a^x) = x \tag{*}$$

$$a^{\log_a(x)} = x \tag{*}$$

$$\ln(e^x) = x \tag{30}$$

$$\ln(e^x) = x \qquad (*) \tag{30}$$

$$e^{\ln(x)} = x \qquad (*) \tag{31}$$

Properties of all logarithmic functions:

$$\log_a(xy) = \log_a(x) + \log_a(y) \tag{*}$$

$$\log_a\left(\frac{1}{x}\right) = -\log_a(x) \tag{*}$$

$$\log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y) \tag{*}$$

$$\log_a(x^c) = c \log_a(x)$$
 where c is a positive constant (*)

Relations for changing bases:

• From an exponential function in base a to the natural exponential:

$$a^x = e^{x \ln a} \tag{36}$$

 \bullet From a logarithmic function in base a to the natural logarithm:

$$\log_a(x) = \frac{\ln x}{\ln a} \tag{37}$$

Trigonometric functions 8

The basic trigonometric functions are:

$$y = f(x) = \sin(x) \tag{38}$$

$$y = f(x) = \cos(x) \tag{*}$$

$$y = f(x) = \tan(x) = \frac{\sin(x)}{\cos(x)} \tag{*}$$

$$y = f(x) = \cot(x) = \frac{\cos(x)}{\sin(x)} \tag{*}$$

$$y = f(x) = \sec(x) = \frac{1}{\cos(x)}$$
 (*)

$$y = f(x) = \csc(x) = \frac{1}{\sin(x)}$$
 (*)

(44)

Table of values you have you know (*):

Angle (degree)	Angle (radian)	\sin	cos	tan
0	0	0	1	0
30	$\pi/6$	0.5	$\sqrt{3}/2$	$1/\sqrt{3}$
45	$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$	1
60	$\pi/3$	$\sqrt{3}/2$	0.5	$\sqrt{3}$
90	$\pi/2$	1	0	not defined

Properties:

$$\cos^2 x + \sin^2 x = 1 \tag{*}$$

$$\sin(2x) = 2\sin x \cos x \tag{*}$$

$$\cos(2x) = \cos^2 x - \sin^2 x \tag{*}$$

Other addition/multiplication formula

$$\cos(a+b) = \cos a \cos b - \sin a \sin b \tag{48}$$

$$\cos(a-b) = \cos a \cos b + \sin a \sin b \tag{49}$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b \tag{50}$$

$$\sin(a-b) = \sin a \cos b - \cos a \sin b \tag{51}$$