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5.2 General logarithmic functions

Textbook Section 4.4

5.2.1 Case study: The photic zone in the Ocean

The photic zone is the upper layer of the ocean or a lake where there is enough light to support life, i.e.
where phytoplanktons or algae can grow, and become part of the food chain for increasingly large predators.
The intensity of sunlight in water decreases with depth under water, as it gets absorbed by water molecules.
Because of this, very little light penetrates below a certain depth. The bottom of the photic zone is usually
defined to be where the light intensity drops to about 1% of its surface value. How deep this is depends on
the clarity of the water. In the clear open ocean, the light intensity drops by a factor of 2 roughly every
30 meters. In more murky lakes and ponds, the light intensity drops much more rapidly, by a factor of 2
roughly every 2 meters instead. Based on this information, how deep is it in the ocean, how deep is it in
the lake? Answering this question will use what we learned from exponentials, and will introduce the need
for logarithmic functions.

Let us begin by constructing a function to model the intensity of light as a function of depth below the
surface, in meters, for the open ocean. For simplicity, let’s assume that the intensity of light at the surface
is exactly 1. (If you are worried about this assumption, note that we can always do this, by selecting a
unit system in which the intensity of light at the surface is the unit intensity).

Based on this construction, let’s also construct a function to model the intensity of light as a function
of depth below the surface, in meters, for the lakes.
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The light intensity as a function of depth in both cases in shown in the following graph. We see that:
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Let’s try to use this graph to find where the bottom of the photic zone is:

Unfortunately this graph has limitations, and is mot as informative as we would like it to be. Here,
we can use a trick that is similar to the one we used in the Case Study about the Rank-Size distribution
of cities : logarithmic axes. To be precise, let’s use a logarithmic axis for the y-axis only, and re-plot the
data. We see that something remarkable happens (which will be explained next week):
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Thanks to this, we can get a better estimate the depth of the bottom of the photic zone for the lakes and
the ocean:

However, this method is still not very precise. Going back to the mathematical expression for the in-
tensity of light, what mathematical equation would we have to solve in order to find the depth at which the
light intensity drops to 1 percent of the surface intensity?

This kind of equation would be easy to solve if we knew what the inverse of an exponential function
18... so let’s find out what they are!

5.2.2 Definition and graph

DEFINITION:

GRAPH:

Case 1: a > 1
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Case2: 0<a<1

DOMAIN OF DEFINITION:

UNIVERSAL PROPERTY OF LOGARITHMS:
.

5.2.3 Examples of logarithms in common bases

THE FUNCTION f(x) = logy(x) (LOGARITHM IN BASE 2)

THE FUNCTION f(z) = logyo(z) (LOGARITHM IN BASE 10)
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EXAMPLES:
e log,,(1000) =
e log,((0.01) =
e log,(0.25) =

o log,(8) =

5.2.4 The inverse relationships

Since the logarithm in base a is the inverse of the exponential in base a, we have the two fundamental
relationships

These relationships can be used to solve exponential equations, such as the following examples:

EXAMPLES:

e Solve 3% =2

Solve 37% =2

Solve 107% = -2

e Solve 274/30 = 0.01 for d

Solve 279/2 = (.01 for d
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These properties can also be used to solve logarithmic equations, or to simplify expressions with ex-
ponentials and logs...

EXAMPLES:

log,(27) =
logs (5v5) =
log;((100%) =

310g3 (2) =

1010g100(2w) =

Solve logy(x) = 3

Solve 2log;o(z) = —4

Solve 2log;((—z) = —4

These relationships can also be used to prove important properties of logarithms...

5.2.5 Properties of the logarithms and examples of use

Textbook Section 4.5

The following rules apply for logarithms.
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To show why these formulas are true, we go back to the definition of the logarithm as an inverse, and
use the properties of the exponentials: for instance, to show why the first formula is true write:

Similarly, we can also show why the second formula is true:

Then, using this, we can now see why the other ones are true as well:

EXAMPLES:

e Combine into one log expression: log, (2% — 1) — log,(z + 1)

e Simplify log,(8(x — 2)):
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e Simplify log;,(1007™) + log, (=)

o Write the following expression as a sum or difference of logs: log;, {ﬁ]

3”+1(m—3)2(z+4):|

e Write the following expression as a sum or difference of logs: logs [ (s=2)%¢





