## Chapter 5

# Exponentials and logarithms

## 5.1 General Exponential functions

Textbook Chapter 4.3

#### 5.1.1 Case Study: Compound interests

When opening a savings account, a bank usually offers an interest rate compounded yearly. Suppose for simplicity that the interest rate is 3%. Compounding yearly means that the interests, at the rate of 3% of the total in your account, are calculated and added to your account once a year. This case study focuses on figuring out how money accrues in your account, starting from a total amount of money of \$100,000.

Starting with \$100,000 how much money will be in the account after 1 year? after 2 years? (assume that no money is taken out in between).

Based on this, how much money will be in the account after n years (assuming no money is ever taken out of the account)?

The following graph shows the function m(n). We see that:



Suppose we now have a more realistic case scenario where the interest rate is 1% instead of 3%. What is the new function that describes the amount of money in your account as a function of year?

Suppose instead we consider an investment account with an estimated growth rate of 5% (and we are lucky enough that the stock market does not crash). What is the new function m(n) now?



The following graph compares the functions m(n) for the 3 different interest rates. We see that:

The functions that we have constructed are all exponential functions. Exponential functions play a crucial role in nearly every aspect of mathematical modeling, in ecology, epidemiology, physics, chemistry, economics (as we just saw) etc... We will now learn about some generic properties of exponentials.

#### 5.1.2 Definition of an exponential functions

DEFINITION:

NOTE: Do not mix up power and exponential functions!

- For power functions:
- For exponential functions:

#### 5.1.3 Graphs of exponential functions

While we may not be used to thinking of exponents as non-integers, or non-rational numbers, just construct the following tables for the functions  $f(x) = 2^x$  and  $g(x) = 2^{-x}$ :



More generally, the graph of a basic exponential function  $f(x) = a^x$  or  $g(x) = a^{-x}$  depends on the value of the base a.

Case 1: a > 1 (typical example:  $f(x) = 2^x$ , or  $g(x) = 2^{-x}$ )

#### 5.1. GENERAL EXPONENTIAL FUNCTIONS

Case 2: 0 < a < 1 (typical example:  $f(x) = 0.5^x$  or  $g(x) = 0.5^{-x}$ )

Finally, knowing the graphs of basic exponential functions, we can now graph functions that are based on the latter, through simple geometric transformations. Here are some examples:

• Graph the function  $f(x) = 3 + 2^{-x}$ 

• Graph the function  $f(x) = 3^{x+1} - 1$ 

• Graph the function  $f(x) = 1 - \left(\frac{1}{2}\right)^x$ 

#### 5.1.4 Properties of exponential functions

MANIPULATION OF EXPONENTIAL FUNCTIONS: The rules for manipulating these functions are the same as the rules for manipulating exponents. Given an exponential function in base a

- •
  •
  •
  •
- •
- •

Also, given another exponential function in base  $\boldsymbol{b}$ 

- •
- •

## etc...

EXAMPLES:

- Simplify:  $f(x) = \frac{3^{x+2}}{9}$
- Simplify  $f(x) = \frac{2^{2x}}{4^x}$
- Simplify  $f(x) = 25^x 5^{-x-1}$
- Simplify  $f(x) = 2^{2x}3^x$

#### 76