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Textbook Chapter 1

1.1 The concept of functions

Although the concept of functions was invented a very long time ago, it is very easy today to gain an
intuitive notion of what functions are because of their natural role in most computer and/or web-based
applications, in engineering, and in economics, etc. Functions can also be used to model data that has
been collected, and provide a simple way of sharing and analyzing this data. We will now look at two
case-studies that showcase the use of functions in both contexts.

1.1.1 Case Study: Online vs. in-store purchase of bulk items

When buying bulk items online, the price is often somewhat cheaper than in store, but one usually needs to
add an extra fee for shipping. It pays off to do a quick little calculation to find out which ends up being the
cheaper of the two options, depending on the quantity purchased. Consider for instance buying diapers:

• In store, a pack of 30 diapers usually sells for about $16.

• Online, the same pack usually sells for $14, but there is a $10 shipping fee to add on the total order
(regardless of the number of packs bought).

Let’s make a table to compare the prices in each as, as a function of the number of packs n bought:

We see that each price can be obtained automatically knowing n simply by applying a simple formula
in each case:

•

•

Furthermore, we see from the table that buying online becomes cost-effective when:
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If we graph of the price of the purchase vs. the number of packs bought, we arrive at the same conclusion:
the graph carries the same information as the table, but in a way that is immediately apparent to the eye.

Using the same technique, we can in principle find the minimum purchase amount to be cost effective
for any item we may be interested in, provided we know the in-store price, the online price, and the shipping
fees. However, creating a table or a graph every time can be a bit time-consuming. Later in this lecture
we will do this in a much more efficient way.

1.1.2 Mathematical corner: Functions defined by a mathematical rule

Definition:

Examples:
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Definitions:

Examples:

•

•

•

To evaluate a mathematical function for any input value of the independent variable, simply replace it in
the mathematical formula by the desired number.

Examples: To find the cost of 10 diaper bags online and in-store, we calculate:

•

•

We also have

A function can also be applied to other variables and even whole expressions instead of numbers. In
that case, simply replace the dependent variable by the whole expression. Although this may seem strange
at first, we will see later why this can be very handy.

Examples:

•

•

•
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Domain of definition of a function: The Domain of Definition of a function f consists of all of the
values x for which we are allowed to or want to assign a value y = f(x).

• “allowed to” refers to the mathematical rules, i.e. when are you allowed to apply that rule to x

Examples:

1. f(x) = 1
x−1

2. f(x) =
√
x− 1

3. f(x) =
√
2−x

x2−1

• “want to” refers to the physical problem considered, i.e. what are the values of x that make sense?

Example : What is the domain of definition of the price of diapers?

1.2 Functions and graphs

As we saw in the previous section, graphs are an easy way to visualize a mathematical function so that
it is easier to interpret. We will learn more about this in this section. Conversedly, when graphs are
obtained purely from data, one may be interested in finding out what function best models this data. In
some cases, a well-chosen fit to the data can be used to summarize the data and share it more easily with
others (ie. by sharing the function rather than each data point). Sometimes, this can even lead us to
discover interesting things about the data that may not have been immediately apparent.
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1.2.1 Case Study: CO2 concentration in the atmosphere

One of the most famous graphs of the last 2 decades depicts the concentration of CO2 in the atmosphere
as a function of time. Each point on this graph has the measurement year as its x−coordinate, and the
measured CO2 concentration as its y-coordinate. Note that early measurements (pre 1958) come from
estimates of the CO2 abundance derived from analysis of ice-cores, while the post 1958 measurements are
direct measurements taken from Mauna Loa (HI). This graph immediately shows:
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Figure 1.1: CO2 concentration as as function of time. Data from Scripps.

The green line is a function fitted to the data with a little trial and error:

We see that it fits the data reasonably well from year 0 to today. This can be useful, since we can
now use this formula to get a rough estimate of what the CO2 concentration was historically at any time
since year 0. For instance,

• In 1980:

• In 2000:

We can also share this information quite easily with other people, simply by sharing the formula, rather
than the entire dataset.

In addition, if we assume that the CO2 abundance will continue to grow at this rate (i.e. following
the same function), we can estimate how high it will be in 2020 and 2030 for instance:
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Again, assuming that the CO2 abundance continues to grow at this rate, we can also estimate how long
it will take to reach 600 ppm, which is thought by many scientists to be one of the tipping points for the
Earth’s climate. To do so, we look at the following graph:
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Note that nothing guarantees that the actual CO2 concentration will actually continue to follow this
trend in the next 50 years. This is merely an empirical model, and should not be viewed as a real prediction.
In reality, the growth may continue to accelerate even more, or may begin to slow down, depending on the
political decisions we make and the response of the global Carbon cycle to this dramatic change. If that is
the case a different modeling function would be required to get a better prediction.

1.2.2 Mathematical corner: Graphs of standard functions and graphing tech-
niques

Definition:
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Single Value Property:

• Saying “y = f(x)” only makes sense when there is a single value of y corresponding to each value
of x. This means that while every function has a graph, not every graph can be the graph of a
function!

• The vertical line test: A graph corresponds to a function only if it passes the Vertical Line
Test: if any vertical line on the graph intersects the line y = f(x) more than once, then f is not
Single Valued, therefore f is not a function.

Examples:

The most basic graphing technique is

• to construct a table of values, with two columns: values of x and corresponding values of f(x)

• draw the corresponding points with coordinates (x, f(x)).

We have seen a few examples of this technique already. However, graphing point by point be a little bit
tedious, and there are a lot of faster techniques. They are based on knowing the graphs of “standard”
functions, and how mathematical and geometrical manipulations of these graphs relate to one another.

The standard functions

The following standard functions are ones everyone should know how to graph, accurately, “by heart”,
from now on. As the course proceeds, we will continue adding to this list of functions.
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As well as

Simple operations on functions, and their geometric interpretation.

Once the graphs of basic functions are known, it is quite easy to find out what the graph of various
other related functions may be. Let us go through a list of simple examples.

• Adding or subtracting a number to a function.
Let’s consider for instance the simple basic function f(x) = x2, and then construct two other
functions g(x) = f(x) + 1 = x2 + 1 and h(x) = f(x)− 3 = x2 − 3.
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This can easily be generalized as :

• Applying a function to x + a or x− a.
Let’s consider again the basic function f(x) = x2, and now construct the functions g(x) = f(x+1) =
(x + 1)2 and h(x) = f(x− 2) = (x− 2)2.

Again, this can easily be generalized as:

• The functions −f(x) and f(−x).
This time, we will consider the basic function f(x) =

√
x, and construct g(x) = −f(x) = −

√
x, as

well as h(x) = f(−x) =
√
−x.
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This can easily be generalized as :

• Scaling the dependent or independent variables.
To illustrate this case, let’s consider another function that we will study in more detail later in this
course: f(x) = 2−x

2

. We then use this function to construct both g(x) = 2f(x) = 2× 2−x
2

, as well

as h(x) = f(2x) = 2−(2x)
2

= 2−4x
2

.

This can easily be generalized as :

Even and odd functions

It is worth noting that some graphs have interesting symmetries. For instance the graphs of f(x) = x2

and f(x) = |x| are mirror-symmetric across the y-axis, while the graphs of f(x) = x3 and f(x) = 1/x
are point symmetric across the origin. Not all graphs have these symmetries, however. For instance
f(x) =

√
x does not have any special symmetry. Let us now see how the symmetry of the graph relates

to the mathematical formula for the function.
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Even functions. Consider a function f(x) whose graph is mirror-symmetric across the y-axis. What is the
graph of f(−x)?

Odd functions. Consider a function f(x) whose graph is point-symmetric across the origin. What is the
graph of f(−x)? What is the graph of −f(−x)?

Examples: Are these functions odd or even or neither?

• f(x) = 3x

• f(x) = −x + 1

• f(x) = x4

• f(x) = −x5

• f(x) = 2
x

• f(x) = − 4
x2


