## AMS 3 formula sheet

All formula with an asterisk must be known by heart. All others are optional and will be given to you in exams if required.

## 1 Lines

The equation of a line with slope $m$ and y-intercept $b$ is

$$
\begin{equation*}
y=f(x)=m x+b \tag{*}
\end{equation*}
$$

If the line goes through 2 points A and B with coordinates $\left(x_{A}, y_{A}\right)$ and $\left(x_{B}, y_{B}\right)$ then

$$
\begin{equation*}
m=\frac{y_{B}-y_{A}}{x_{B}-x_{A}} \tag{*}
\end{equation*}
$$

## 2 Quadratic equations

$$
\begin{equation*}
y=f(x)=a x^{2}+b x+c \quad(*) \tag{3}
\end{equation*}
$$

The graph of $y=f(x)$ is a parabola. It has a minimum (i.e. parabola opens upwards) if $a>0$. It has a maximum (i.e. parabola opens downwards) if $a<0$. The minimum/maximum is at the location $x_{V}$ with

$$
\begin{equation*}
x_{V}=-\frac{b}{2 a} \tag{*}
\end{equation*}
$$

It has roots (i.e it intersects the $x$-axis) when $y=f(x)=0$. The solutions to this equation depends on the value of $D$ :

$$
\begin{equation*}
D=b^{2}-4 a c \tag{*}
\end{equation*}
$$

- if $D<0$ there are no solutions. The parabola does not intercept the $x$-axis.

The function $f(x)=a x^{2}+b x+c$ cannot be factored.

- if $D=0$ there is one solution. The parabola just touches the $x$-axis at the point

$$
\begin{equation*}
x_{1}=x_{V}=-\frac{b}{2 a} \tag{*}
\end{equation*}
$$

The function $f(x)=a x^{2}+b x+c$ is factored as

$$
\begin{equation*}
f(x)=a\left(x-x_{1}\right)^{2} \tag{*}
\end{equation*}
$$

- if $D>0$ there are two solutions. The parabola intercepts the $x$-axis in the two points

$$
\begin{equation*}
x_{1}=\frac{-b-\sqrt{D}}{2 a}, x_{2}=\frac{-b+\sqrt{D}}{2 a} \tag{*}
\end{equation*}
$$

The function $f(x)=a x^{2}+b x+c$ is factored as

$$
\begin{equation*}
f(x)=a\left(x-x_{1}\right)\left(x-x_{2}\right) \tag{*}
\end{equation*}
$$

## 3 Polynomial functions

$$
\begin{equation*}
y=f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n} \tag{*}
\end{equation*}
$$

$a_{n}$ is the leading coefficient, $n$ is the order of the polynomial.
The factored form of $f$ is

$$
\begin{equation*}
f(x)=a_{n}\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \ldots\left(x-x_{m}\right) q(x) \tag{11}
\end{equation*}
$$

where $x_{i}$ are all possible solutions to $f(x)=0$ and $q(x)$ is a polynomial of order $n-m$, leading coefficient 1 , with no roots $(q(x) \neq 0)$.

## 4 Rational functions

$$
\begin{equation*}
y=f(x)=\frac{p(x)}{q(x)} \tag{*}
\end{equation*}
$$

where $p(x)$ and $q(x)$ are polynomial functions.
The roots of $p(x)$ are the roots of $f(x)$. The roots of $q(x)$ are the asymptotes of $f(x)$.

## 5 Power functions

$$
\begin{equation*}
y=f(x)=x^{a} \tag{13}
\end{equation*}
$$

Properties:

$$
\begin{align*}
& x^{a+b}=x^{a} x^{b}  \tag{14}\\
& x^{-a}=\frac{1}{x^{a}}  \tag{15}\\
& x^{a-b}=\frac{x^{a}}{x^{b}}  \tag{16}\\
& x^{a b}=\left(x^{a}\right)^{b}=\left(x^{b}\right)^{a} \tag{17}
\end{align*}
$$

## 6 Exponential functions

Exponential in base $a$ :

$$
\begin{equation*}
y=f(x)=a^{x} \text { with } a>0 \tag{18}
\end{equation*}
$$

Natural exponential (exponential in base $e$ with $e=2.71828 \ldots$ ):

$$
\begin{equation*}
y=f(x)=e^{x}=\exp (x) \tag{*}
\end{equation*}
$$

Properties of all exponential functions:

$$
\begin{align*}
& a^{x+z}=a^{x} a^{z}  \tag{20}\\
& a^{-x}=\frac{1}{a^{x}}  \tag{21}\\
& a^{x-z}=\frac{a^{x}}{a^{z}}  \tag{22}\\
& a^{x z}=\left(a^{x}\right)^{z}=\left(a^{z}\right)^{x} \tag{23}
\end{align*}
$$

## 7 Logarithmic functions

Logarithm in base $a$ is the inverse of the exponential in base $a$ :

$$
\begin{equation*}
y=\log _{a}(x) \text { is equivalent to } x=a^{y} \tag{*}
\end{equation*}
$$

Natural logarithm (logarithm in base $e$ ) is the inverse of the natural logarithm:

$$
\begin{equation*}
y=\log _{e}(x)=\ln (x) \text { is equivalent to } x=e^{y} \tag{*}
\end{equation*}
$$

Inverse relations:

$$
\begin{array}{ll}
\log _{a}\left(a^{x}\right)=x & (*) \\
a^{\log _{a}(x)}=x & (*) \\
\ln \left(e^{x}\right)=x & (*) \\
e^{\ln (x)}=x & (*) \tag{29}
\end{array}
$$

Properties of all logarithmic functions (where $a$ is a positive constant).

$$
\begin{align*}
& \log _{a}(x y)=\log _{a}(x)+\log _{a}(y)  \tag{30}\\
& \log _{a}\left(\frac{1}{x}\right)=-\log _{a}(x)  \tag{31}\\
& \log _{a}\left(\frac{x}{y}\right)=\log _{a}(x)-\log _{a}(y)  \tag{32}\\
& \log _{a}\left(x^{c}\right)=c \log _{a}(x) \tag{33}
\end{align*}
$$

Relations for changing bases:

- From an exponential function in base $a$ to the natural exponential:

$$
\begin{equation*}
a^{x}=e^{x \ln a} \tag{*}
\end{equation*}
$$

- From a logarithmic function in base $a$ to the natural logarithm:

$$
\begin{equation*}
\log _{a}(x)=\frac{\ln x}{\ln a} \tag{35}
\end{equation*}
$$

## 8 Trigonometric functions

The basic trigonometric functions are:

$$
\begin{align*}
& y=f(x)=\sin (x)  \tag{36}\\
& y=f(x)=\cos (x)  \tag{37}\\
& y=f(x)=\tan (x)=\frac{\sin (x)}{\cos (x)} \tag{38}
\end{align*}
$$

Table of values you have you know (*):

| Angle (degree) | Angle (radian) | $\sin$ | $\cos$ | tan |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 0 |
| 30 | $\pi / 6$ | 0.5 | $\sqrt{3} / 2$ | $1 / \sqrt{3}$ |
| 45 | $\pi / 4$ | $\sqrt{2} / 2$ | $\sqrt{2} / 2$ | 1 |
| 60 | $\pi / 3$ | $\sqrt{3} / 2$ | 0.5 | $\sqrt{3}$ |
| 90 | $\pi / 2$ | 1 | 0 | not defined |

Properties:

$$
\begin{align*}
& \cos ^{2} x+\sin ^{2} x=1  \tag{39}\\
& \sin (2 x)=2 \sin x \cos x  \tag{40}\\
& \cos (2 x)=\cos ^{2} x-\sin ^{2} x  \tag{41}\\
& \tan (2 x)=\frac{2 \tan x}{1-\tan ^{2} x} \tag{42}
\end{align*}
$$

Other addition/multiplication formula

$$
\begin{align*}
\cos (a+b) & =\cos a \cos b-\sin a \sin b  \tag{43}\\
\cos (a-b) & =\cos a \cos b+\sin a \sin b  \tag{44}\\
\sin (a+b) & =\sin a \cos b+\cos a \sin b  \tag{45}\\
\sin (a-b) & =\sin a \cos b-\cos a \sin b  \tag{46}\\
\tan (a+b) & =\frac{\tan a+\tan b}{1-\tan a \tan b}  \tag{47}\\
\tan (a-b) & =\frac{\tan a-\tan b}{1+\tan a \tan b} \tag{48}
\end{align*}
$$

