Chapter 2

Polynomial functions

In this Chapter we will study a large class of functions called "polynomial functions", which all take the form:

The simplest example of these polynomial functions are the linear functions.

2.1 Linear functions

Textbook Section 2.1 and 2.2.

2.1.1 Case study: CO_{2} as an indoor pollutant

This case study is based on the findings of a paper entitled "Is CO_{2} an indoor pollutant? Direct effects of low to moderate CO_{2} concentrations on human decision-making performance.", by a team of researchers from Upstate Medical University (Syracuse, NY) and from Lawrence Berkeley National Labs, in 2012 (see website for a link). Researchers asked 22 volunteers to take part in computerized decision-making tests that each take 2.5 hours, while being in an environment containing more CO_{2} than normal, at levels of 600 ppm (considered normal for indoor environments), 1000ppm (slightly above normal), and 2500ppm (significantly above normal). None of these levels are thought to have long term harmful effects to health, but they were demonstrated in this experiment to have statistically significant impacts on various aspects of the decision making processes. Nine kinds of tasks were tested, ranging from basic activities, to information search and usage, to basic use of strategy, using a well-known and well calibrated decision-making test. The following table summarizes test results for 3 of these tasks, scaled to their "normal value" at a CO_{2} concentration of 600ppm (so by construction, the scaled results is equal to one in that case).

CO_{2}	Information Search	Information Use	Strategy
600 ppm	1 ± 0.15	1 ± 0.3	1 ± 0.18
1000 ppm	1 ± 0.15	0.85 ± 0.2	0.77 ± 0.18
2500 ppm	1 ± 0.15	0.3 ± 0.15	0.06 ± 0.04

The errors are related to the spread in the test scores of each individual participants, while the main value reported is the average of all the test scores. The same information is presented in the following graph:

From this graph, we can immediately see a few important things:
-
-

However, can we be more quantitative about some of these statements? And can we use this information to predict, what the relative decision-making performance of someone may be as a function of the ambient CO_{2} concentration for any possible input values of the latter? Or, above which level the performance on a given task becomes so poor as to be useless? To do this, we need to create a function that takes as input the value of the ambient CO_{2} concentration, and returns the scaled raw score. With such knowledge, one would be able to better predict the effects of CO_{2} on the performance of workers in a company, or of students in test-taking environments, depending on the tasks they have to perform. Let us now learn a little bit more about linear functions, which we shall see are quite relevant for this case study.

2.1.2 Mathematical corner: Definition and basic properties of linear functions

Definition:

Domain of definition of a Linear function:

Examples of Linear functions and their graphs:

Graph of a linear function: The graph of $y=f(x)=m x+b$ is a straight line with slope m and y-intercept b:

Note that we can also define the x-intercept:

Examples:

\bullet
-
-

BASIC PROPERTIES OF A LINEAR FUNCTION:
-
\bullet
\bullet
-

2.1.3 Case study: CO_{2} as an indoor pollutant (part 2)

Going back to our case study, we want to find a function that takes as input the CO_{2} level, and returns, for any input value, the predicted relative test score for each of the three tasks.

Let us look at Task 1 (Information search) first.

For Tasks 2 (Information use) and Task 3 (Strategy), it's a little more complicated, but not much.

As we learned in Algebra, this can be done using the point-slope formula:

For task 2 (information use), we have

For task 3 (strategy), we have

To conclude, now that we know m and b for each task, we can finally write that the function describing the relationship between relative test performance and CO_{2} concentration is

Let's now interpret these mathematical formulae. We see that the slope becomes more and more negative as the complexity of the thought processes required to complete the task become:

This confirms our qualitative inspection of the figure, but gives us a way to quantify the effect. We can also use this information in a predictive way, to estimate what the decrease in test performance (relative to the standard test at 600ppm) would be for any input concentration of CO_{2}. For instance, at 2000 ppm, the relative performance in each task would be

Similarly, any relative test score close to 0 or even below 0 indicates systematically dysfunctional decision making. Above which CO_{2} concentration does this happen? Again, we can answer this equation either by looking at the graph, or mathematically.

These results all strongly suggest that offices where research is done, or where non-trivial managerial decisions are made, should be well-ventilated to avoid the negative effects of CO_{2}.

2.1.4 Mathematical corner: Properties of lines (a little bit of geometry)

Studying linear functions is easier if we remember a little bit about properties of lines, since the graph of a linear function is a line.

Geometrically speaking, a line is uniquely defined either by
-
-

Consequence:

Note that if you know the coordinates of the two points, you can calculate the slope of the line going through the points:

Also, remember that
-
-
\bullet

Once the slope of a line is known, there are two ways of writing the line equation:

- The slope-intercept formula (if you know the y-intercept):
- The point-slope formula (if you know a point on the line):

Examples:

- Finding a line going through one point, with a "given" slope:
- Finding a line going between two points:

