Chapter 4

Powers functions. Composition and Inverse of functions.

4.1 Power functions

4.1.1 Definition and examples

Definition:

Examples:

4.1.2 Examples of power functions in Nature

We saw earlier that many geometric problems lead to power-law relationships between variables. However, even in Nature there are many examples of power laws, sometimes with integer exponents, sometimes with non-integer exponents.

- Fundamental forces of Physics follow power-law scalings:

Example: The force of gravitation

- Allometric laws in Biology: Power functions are frequently found when relating (empirically) two biological variables.
- Example: Kleiber's Laws:

Body Metabolism Rate $=3.5(\text { Body Weight })^{3 / 4}$ Watts .

- The optimal cruising speed for a bird/plane as a function of their body mass: Speed $=30$ Mass $^{1 / 6} \mathrm{~m} / \mathrm{s}$ (mass in kg)

4.1.3 Manipulations of power functions

The following rules apply for manipulating power functions:
-
-
-
-

4.1.4 Graphs of power functions

The overall shape of the graph of a power function depends on the sign and value of the exponent...

4.2 Composition of functions

So far, we have always just considered functions individually, i.e. we were given a function $f(x)$ to study. As we saw in the very first Chapter, given two functions we can add them, subtract them, multiply or divide them and create another function in the process. These are simple algebraic manipulations of functions, involving basic algebraic operations $(+,-, \times, \div)$

However, there is another operation on functions that we have so far ignored, which is called composition of functions. The idea behind the composition of function comes from the fact that things can depend on each other not only directly, but also through a series of causal links: a quantity A depends on a quantity B, and B depends on C, so indirectly, A also depends on C.

Examples:

-

\bullet

Since a function can be viewed as dependence relationship (i.e. the dependent variable depends on the independent one), any indirect dependence can also be represented as a function. To do this mathematically, we use an operator on functions called composition.

Examples:

- $f(x)=\sin (x), g(x)=4 x-1: f \circ g$:
- $f(x)=\frac{1}{x^{2}-2}, g(x)=x+1: f \circ g:$
- $f(x)=\sqrt{1-x}, g(x)=x^{2}: g \circ f:$

In fact, we have already been using functions that are the results of the composition of two other functions all along, without realizing it! For instance,

- $f(x)=x^{3}, g(x)=4 x-1: f \circ g:$
- $f(x)=\frac{1}{x}, g(x)=4 x-1: f \circ g:$

Important note: Changing the order of the composition yields an entirely different function!
Example: $f(x)=\sqrt{x}, g(x)=x^{2}+1$

- $f \circ g$:
- $g \circ f$:

4.3 Inverse of functions

Textbook section 4.1

4.3.1 Definition and examples

Definition:

As a result

Graphical interpretation:

Examples

- $y=f(x)=3 x+2$:
- $y=f(x)=x^{2}($ for $x \geq 0)$:
- $y=f(x)=\sqrt{x-2}($ for $x \geq 2)$:

Important notes:
-
-
-
-

4.3.2 Graph of an inverse function and horizontal line test:

Example 1: $y=f(x)=3 x+2$

Example 2: $y=f(x)=x^{2}$

So from these graphs we notice that:

Note: It may happen that through this process, the graph of the inverse does not satisfy the vertical line test: in that case, the inverse is not defined.

Horizontal line test: To verify that the inverse of a function is unique, we check that the function satisfies the horizontal line test:

When a function $f(x)$ does not satisfy the horizontal line test, we can often choose a smaller domain for which the inverse is unique.

EXAMPLE: for the function $f(x)=x^{2}$, we saw earlier that the inverse of $f(x)=x^{2}$ is defined provided we select only the interval for which $x \geq 0$. In this interval, the function $f(x)$ does satisfy the horizontal line test.

4.3.3 Inverse of simple rational functions (a worked example)

What is the inverse of the function $f(x)=\frac{3 x+1}{x-2}$?

4.3.4 Inverses of power functions

Rule:

Proof 1:

Proof 2: Remember that to show that two functions (f and g for example) are inverse of one another, you simply evaluate $f \circ g$:

Aplications:

- What is the inverse of $f(x)=x^{3}$?
- What is the inverse of $f(x)=x^{-1 / 2}$?
- What is the inverse of $f(x)=x^{-\pi}$?
- Solve for x : $x^{2 \pi}-5 x^{\pi}+6=0$
- What is the typical mass of a mammal whose metabolic rate is 100 Watts?

