6.7 Trigonometric formulas

Textbook Section 6.4
There are a few very important formulas in trigonometry, which you will need to know as a preparation for Calculus. These formulas are very useful when trying to simplify complicated expressions which involve trigonometric functions.

6.7.1 The basic formulas

We've already seen a few of these formulas: the three basic ones are
-
-
-

Examples of use:

- Simplify: $1+\tan ^{2}(x)$
- Simplify: $1-\frac{\cot ^{2}(x)}{\csc ^{2}(x)}$
- Prove that $\frac{1-\sin \theta}{\cos \theta}=\frac{\cos \theta}{1+\sin \theta}$

The list of trigonometric identities which can be proved using the basic formulas is endless. See Textbook Examples 1-8 for instance.

6.7.2 The addition formulas

The addition formulas relate the sines and cosines of sums of angles to the products of sines and cosines of basic angles. The 4 formulas are
-
-
-
-

Examples: These examples show that these formulas indeed work:

- $\cos (\pi / 3-\pi / 6)$
- $\cos (\pi / 3+\pi / 3)$
- $\sin (\pi / 4+\pi / 4)$

Also, they confirm our hunch that $\sin (x)$ and $\cos (x)$ are the "same" function but displaced by $\pi / 2$. Indeed, we saw from the graph that $\sin (x)=\cos (x-\pi / 2)$. We can now prove this mathematically:

Note: There is no equivalent product formulas: there is no simple identity for $\cos (a b)$ and $\sin (a b)$. On the other hand, the addition formulas can be used backward to prove the following identities:

Altogether these identities can be used to prove another nearly-infinite number of identities.
Example 1: Prove that

$$
\frac{\sin (a-b)}{\cos (a) \cos (b)}+\frac{\sin (b-c)}{\cos (b) \cos (c)}+\frac{\sin (c-a)}{\cos (c) \cos (a)}=0
$$

Example 2: Prove that $\cos ^{2} a-\sin ^{2} b=\cos (a-b) \cos (a+b)$

Example 3: Prove that $\sin ^{2} a-\sin ^{2} b=\sin (a-b) \sin (a+b)$

6.7.3 The double-angle formulas

As a consequence of the addition formulas, we have 3 more formulas which are called the double-angle formulas because they express the sine and cosine of the angle $2 a$ in terms of the sine and cosine of the angle a. These formulas are
-
-

To show them, note that

Again, these double-angle formula can be used to simplify trigonometric expressions.
Example 1: Simplify $\frac{\sin (2 x)}{\sin (x)}-\frac{\cos (2 x)}{\cos (x)}=\sec x$

Example 2: Show that $\tan (2 x)=\frac{2 \tan (x)}{1-\tan ^{2}(x)}$

Example 3: Show that $\cos (2 x)+1=2 \cos ^{2}(x)$

6.7.4 Summary

Of the various formulas above, only a few have to be known by heart:

- The definition of the various functions:
- The Pytagorean identity:
- The symmetry property:
- The periodicity property:
- The phase-shift property:
- The 2 double-angle formulas:

All of the other formulas can be recovered from combining these ones - so don't clog your memory with formulas... In what follows, we will now use these formulas to solve equations involving trigonometric functions.

