6.6 The inverse trigonometric functions

Textbook Section 6.1

6.6.1 Definitions

We define the three basic inverse trigonometric functions:

Horizontal line test? However, note how neither of the three basic trigonometric functions pass the horizontal line test. As a consequence, the domain of definition of the inverse functions is limited to a region where the function does pass the test.

Based on that, we can now graph the $\sin (x)$ function and its inverse:

As well as the $\cos (x)$ function and its inverse:

And finally, the $\tan (x)$ function and its inverse:

As for any function and their inverse, $f\left(f^{-1}(x)\right)=f^{-1}(f(x))=x$ so, for any x within the domain of definition of the respective functions, we have:

Examples:

- What is $\arcsin (\sin (\pi / 3))$?
- What is $\sin ((\arcsin (2))$?
- What is $\arctan (\tan (\pi / 3))$?
- What is $\tan ((\arctan (2))$?

Finally, note that in Calculus, the expressions $\sin \left(\cos ^{-1}(x)\right)$ and $\cos \left(\sin ^{-1}(x)\right)$ will often come up. These cannot be simplified as easily as the other ones, but on the other hand, by combining them with the Pythagorean formula, we can still get a nicer formula:

6.6.2 Applications of inverse trigonometric functions

Example 1: A contractor is installing a door in a narrow corridor. The door is 3 ft long, centered in the wall, and the corridor is 4 feet wide (see diagram). What is the maximum angle this door could open?

Example 2: The water level of tides in Santa Cruz in Steamer's lane is given by $h(t)=15+6 \cos \left(2+\frac{\pi}{6} t\right)$. At what time is the low tide?

