Algebra Workshop 4: Expressions with exponents

1 Rules for expressions with exponents

Review the following rules:

- $a^{m} a^{n}=a^{m+n}$ and $a^{m} a^{-n}=a^{m-n}$
- $\left(a^{m}\right)^{n}=a^{m n}=\left(a^{n}\right)^{m}$
- $a^{m} / a^{n}=a^{n-n}$
- $(a b)^{m}=a^{m} b^{m}$
- $\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$
- $a^{-m}=\frac{1}{a^{m}}$
- $a^{0}=1$
- $\left(\frac{a}{b}\right)^{-m}=\left(\frac{b}{a}\right)^{m}$

Note: These rules are applicable whether one has integer exponents, rational or irrational exponents.
Practice: Each group gives one example of application for each of these 8 rules. Try to mix and match which "direction" you illustrate the rule. Be creative!

Important other rules:

- $\sqrt{-5}=(-5)^{1 / 2}$ is not a real number - and the same applies for any even root of a negative number! But on the other hand $\sqrt[3]{-5}=(-5)^{1 / 3}$ exists and is equal to $-\sqrt[3]{5}$. This is true for any odd root of a negative number.
- $\sqrt{a+b} \neq \sqrt{a}+\sqrt{b}$
- $\sqrt{x^{2}}=|x|$ and not $\sqrt{x^{2}}=x$. The same is true for all even root.
- $\sqrt[3]{x^{3}}=x$. The same is true for all odd roots.

Practice: True or False?

- $\sqrt{49}=-7$
- $\sqrt[3]{-27}=-3$
- $(\sqrt[3]{10})^{3}=10$
- $\sqrt{x+y}=\sqrt{x}+\sqrt{y}$
- $\sqrt{x y}=\sqrt{x} \sqrt{y}$
- $\sqrt{x^{2}-y^{2}}=x-y$
- $\frac{\sqrt{x}}{\sqrt{y}}=\sqrt{\frac{x}{y}}$
- $\sqrt[3]{p^{3}+q^{3}}=\sqrt[3]{p^{3}}+\sqrt[3]{q^{3}}$
- $\sqrt{10+6}=\sqrt{10}+\sqrt{6}$
- $\sqrt{10+6}=4$
- $\sqrt{a^{2}}-a=0$
- $\sqrt[5]{b^{5}}-b=0$

2 Simplifying simple expressions

- $\left(1+x^{2}\right)^{2}\left(x^{2}+1\right)^{7}=$
- $\frac{3^{x}}{3^{1-x}}=$
- $\left(2 x^{2} y^{3} z\right)^{2}=$
- $\left(\frac{a}{b^{1 / 2}}\right)^{-1}=$
- $\left(\frac{x^{3} y^{2} z}{x y^{2} z^{-5}}\right)^{-3}=$
- $2^{n} 8^{n+1}=$
- $\left(2 x^{1 / 2} y^{1 / 4} z\right)^{2}=$
- $\left(\frac{a}{a^{1 / 2}}\right)^{2}=$
- $\left(\frac{x^{3 / 2} y^{1 / 2} z}{x y^{3 / 2} z^{-3 / 2}}\right)^{4}=$
- $4^{1 / n} 8^{\frac{1}{2 n}}=$

3 Simplifying harder expressions

- Simplify $\left(-1-2 x-x^{2}\right)^{3}\left(x^{2}+2 x+1\right)^{-3}=$
- Simplify $\frac{\sqrt{1+x^{2}}}{\left(1+x^{2}\right)}$
- Simplify $\frac{\left(1-x^{2}\right)^{5 / 2}}{\left(1-x^{2}\right)^{3 / 2}}$
- Simplify $\frac{2^{2 x}-1}{2^{x}+1}$
- Simplify $\left(3^{x / 2}+3^{-x / 2}\right)\left(3^{x / 2}-3^{-x / 2}\right)$

