Algebra Workshop 2: Factoring polynomials

1 The standard expressions

The three formulae you have to know: for any expression "E" and "F",

- $E^{2}+2 E F+F^{2}=(E+F)^{2}$
- $E^{2}-2 E F+F^{2}=(E-F)^{2}$
- $E^{2}-F^{2}=(E-F)(E+F)$

Examples:

- $x^{2}+6 x+9=(x+3)^{2}$
- $-x^{2}+2 x-1=-\left(x^{2}-2 x+1\right)=-(x-1)^{2}$
- $10-x^{2}=(\sqrt{10}-x)(\sqrt{10}+x)$

Note: This is not limited to these simple examples...

- $-x^{4}-4 x^{2}-4=-\left(x^{4}+4 x^{2}+4\right)=-\left(x^{2}+2\right)^{2}$
- $x^{6}-5 x^{3}+\frac{25}{4}=\left(x^{3}-\frac{5}{2}\right)^{2}$
- $(10-x)^{2}-(2+2 x)^{2}=[(10-x)+(2+2 x)][(10-x)-(2+2 x)]=[12+x][8-3 x]$

Practice: Recognize one of the standard formulae, and factor the polynomial using this formula. If the polynomial is not one of the three standard formula above, mark it with a star. Hint: in total, there are 4 starred problems.

- $x^{2}+12 x+36$
- $x^{2}-2 x+1$
- $x^{2}+4 x-4$
- $-x^{2}+3 x-\frac{9}{4}$
- $2 x^{2}+8 x+6$
- $5 x^{2}-20 x+20$
- $x^{2}-11$
- $1-x^{4}$
- $x^{3}+1$
- $-2 x^{2}+5$
- $(3 x+1)^{2}+x^{2}$
- $(2 x-1)^{2}-2 x^{2}$
- $x^{2}+2 x+1-2 x^{2}-8 x-8$

Practice: Invent two "hard" problems which can be factored using these standard expressions, and give them to your working partner. Solve the problems, and check with your TA/teacher.

2 Common factor

RULE: In a sum of terms, if you recognize a "common factor", you can factor it out of every term.

Examples:

- $2 x^{3}-2 x=2 x\left(x^{2}-1\right)$ (the factor $2 x$ is in both $2 x^{3}$ and $\left.2 x\right) \ldots$ Then $x^{2}-1$ can be factored further...
- $-30 x^{3}+27 x^{2}-9=-3\left(10 x^{3}-9 x^{2}+3\right) \ldots$ Here, 3 is the only common factor, and it "looks nicer" by factoring a minus too.
- $6 x^{4}+36 x^{2}=6 x^{2}\left(x^{2}+6\right)$

Note: This is not limited to these simple examples...

$$
\begin{aligned}
& \text { - }(x-2)(x+1)^{2}-(x+1)(x+3)=(x+1)[(x-2)(x+1)-(x+3)]=(x+1)\left[x^{2}-x-2-x-3\right]= \\
& (x+1)\left(x^{2}-2 x-5\right) \\
& \text { - } x^{2}-16+(x+1)(4-x)=(x-4)(x+4)+(x+1)(4-x)=(x-4)(x+4)-(x+1)(x-4)= \\
& (x-4)[(x+4)-(x+1)]=3(x-4)
\end{aligned}
$$

Practice: Find a common factor and ... factor.

- $-2 x^{3}-2 x^{2}+4 x$
- $2 x^{10}+3 x^{5}+4 x^{7}-2 x^{2}$
- $-x(x+1)+(x-2)(x+1)-2(1+x)$
- $121 x^{2}+11 x-77$
- $(x-2)^{2}+(x-2)(10+x)$
- $(4+x)(2-x)+2 x-4$
- $x^{4}-1+6\left(x^{2}+1\right)$

3 Grouping

The grouping technique only works occasionally, for expressions which have 4 terms or more (no point "grouping" less than 4 terms). The idea is that finding a common factor between two pairs of terms is easier than finding a common factor in the whole expression. Then, sometimes, each pair once factored contains a term which is common to all pairs, and can be used as the next common factor.

Examples:

- $x^{3}+2 x^{2}-x-2=\left(x^{3}+2 x^{2}\right)-(x+2)=x^{2}(x+2)-(x+2)=(x+2)\left(x^{2}-1\right)=(x+2)(x-1)(x+1)$
- $2 x^{5}-3 x^{4}+6 x^{2}-9 x=\left(2 x^{5}-3 x^{4}\right)+\left(6 x^{2}-9 x\right)=x^{4}(2 x-3)+3 x(2 x-3)=\left(x^{4}+3 x\right)(2 x-3)=$ $x\left(x^{3}+3\right)(2 x-3)$

Note: Usually, there are different possible ways of grouping terms which have common factors. Starting with a different pair still yields the same result.

Practice: For the two examples above, find a different way of pairing the terms and redo the problem to verify you obtain the same answer.

More grouping problems: Group these problems in as many different ways as possible

- $2 x^{8}-4 x^{2}-6 x^{6}+12$
- $x^{11}+x^{9}-2 x^{7}-2 x^{5}+6 x^{3}+6 x$

