Chapter 1

Algebra Review

1.1 Numbers, representation on the line and intervals

Textbook Section 1.1

1.1.1 Definitions

- Natural numbers are numbers used, for example, to count people that are present. They form the set:
- Integer numbers are formed by considering the ensemble of all natural numbers and their negative version, as well as zero:
- Rational numbers are formed by taking the ratio of two integers:
- Irrational numbers are everything else...

What does that mean?

- In decimal notation all numbers can be written as:

Example:

- For rational numbers,
- Irrational numbers are everything else...

Important:
-
-

1.1.2 Representation on the line

There is a one-to-one correpondance between points on a line, and real numbers:

1.1.3 Intervals and inequalities

An interval represents a continuous subset of the numbers. It is equivalent to a segment on the line:

An interval can also be represented by an inequality. The fact that there exist two types of inequalities $(\geq, \leq$ vs. $>,<)$ implies that there are two types of intervals: open or closed:
-
-
Important: If the end-point is $\pm \infty$ then that end is always open.

Examples:

-
-

1.2 Integer exponents

Textbook Appendix B1
Definitions: Given a real number x and an integer n, then
-
-
-
All the properties of integer exponents can be deduced from these two:
-
-
\bullet
-

Examples:

1.3 Polynomials, and manipulations of polynomials

A polynomial in the variable x can always be written in the form:

However, sometimes a polynomial can also be given in the form of products of factors, such as

To expand an expression (a polynomial) means to multiply out all the factors, and collect the terms according to the power of the variable in question.

Important: Note the three very important expression we derived:
-
-
-
When dealing with factors raised to a larger power, it is much easier to find the expanded expression by using "Pascal's Triangle":

1.4 Factoring Polynomials

Textbook Appendix B_{4}
Factoring a polynomial is the opposite of expanding, it means to write the polynomial as a product of factors, in the form:

Factoring is not always easy There are a few basic factoring techniques, and then more advanced techniques (see later).

Basic factoring techniques:

- Common factor: Look for a common factor in all the terms of the polynomial
- Grouping: Group terms in the polynomials which may give rise to similar factors
- Difference of squares: This is a *MUST KNOW* standard formula for factorization...
- Two standard quadratic formulae: This is another *MUST KNOW* standard formula for factorization...
- Difference of cubes and sums of cubes: These can also be useful...
- Trial and error and a lot of "intuition"...

1.5 Fractions

Textbook Appendix B5
To use fractions, remember the rules:
-
-
.
-
-
-
-
-
-
-
With this, you can manipulate all expressions! Examples:

1.6 Factoring Rational Expressions

Textbook Appendix B4 and B5
A rational expression is the ratio of two polynomials (either in factored form, or in expanded form):

However, sometimes it appears as the sum or difference of two expressions, in which case you first have to reduce them to the same denominator:

In order to factor rational expressions:

- factor the numerator and denominator separately
- use the simple agebra rules to simplify the resulting fraction

Examples:

