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9.3 A Fourier view of homogeneous isotropic tur-
bulence

With the advent of supercomputing, Direct Numerical Simulations in triply-
periodic domains (which are inherently homogeneous) rapidly became one of
the preferred approaches to study turbulence. As we shall demonstrate, the
two views of the problem give equivalent results, as expected. But the Fourier
representation is arguably more directly accessible, the main advantage being
that the entire flow can be computed and therefore known at any point in
time and space (given enough computational power). In addition, many of the
quantities introduced in the previous section can be written in a very simple
form in terms of the Fourier expansion of the velocity field.

9.3.1 Definitions

The triply-periodic nature of the system naturally lends itself to the use of a
Fourier decomposition. Assuming that the simulation is performed in a cubic
box of size L, the periodicity of the flow in L in each direction suggests the
decomposition

q(x, t) =
∑
k

q̂(k, t) exp(ik · x) (9.65)

where k is the 3D wavevector k = (kx, ky, kz) = 2π
L (nx, ny, nz) and nx, ny, nz

are integers, and where

q̂(k, t) =
1

L3

∫ L

0

∫ L

0

∫ L

0

q(x, t) exp(−ik · x)dxdydz ≡ 〈q(x, t) exp(−ik · x)〉L
(9.66)

where 〈·〉L denotes a volume average over the cube. To show this, one must
make use of the orthogonality property that

〈exp(ik · x) exp(−ik′ · x)〉L = δk,k′ (9.67)

that is, 0 if k 6= k′ and 1 otherwise. It is easy to show that this Fourier
representation has the property

q(k, t) = q∗(−k, t) (9.68)

when q(x, t) is real.

9.3.2 What happened to isotropy?

At this point, one may question whether a triply periodic box is appropriate to
describe an isotropic system – and indeed, it is not, since by construction the
box knows about preferred directions (i.e. ex, ey and ez). Furthermore, the
wavevectors k being discretely distributed, they cannot represent all possible
directions of the flow, since they exist on a grid (see Figure 9.4). Note, however,
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Figure 9.4: Discretization of wavenumber space.

that the grid has a spacing of 2π/L in each direction, so by taking the limit
L → ∞, we ultimately create a denser and denser grid, for which isotropy
gradually becomes a meaningful concept. In all that follows, we will therefore
always think of taking the limit L→∞ when thinking of isotropy.

9.3.3 The incompressibility condition

The Fourier expansion can be applied to each component of the velocity field
individually, which then defines

u(x, t) =
∑
k

û(k, t) exp(ik · x) (9.69)

The incompressibility condition requires

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

=
∑
k

i(kxûx + kyûy + kzûz) exp(ik · x) = 0 (9.70)

which implies k · û(k, t) = 0 for each wavevector k.

9.3.4 The Navier Stokes equations in Fourier space

We can now use the Fourier expansion to recast the Navier Stokes equation in
Fourier space. To do so we begin with

∂ui
∂t

+ uj∂jui = −∂ip+ ν∂jjui (9.71)
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(ignoring the possibility of a forcing term for now), using the convention of
implicit summation over repeated indices. This becomes

∂

∂t

∑
k

ûi(k, t) exp(ik · x) +
∑
k′

ûj(k
′, t) exp(ik′ · x)∂j

∑
k

ûi(k, t) exp(ik · x)

= −∂i
∑
k

p̂(k, t) exp(ik · x) + ν∂jj
∑
k

ûi(k, t) exp(ik · x)(9.72)

(note the difference between the subscripts i and the i that is
√
−1) and so∑

k

∂ûi
∂t

(k, t) exp(ik · x) + i
∑
k,k′

ûj(k
′, t)kj ûi(k, t) exp(i(k + k′) · x)

= −i
∑
k

kip̂(k, t) exp(ik · x)− ν
∑
k

|k|2ûi(k, t) exp(ik · x) (9.73)

Multiplying by k′′ and integrating over the volume (using the orthogonality
condition)

∂ûi
∂t

(k′′, t)+i
∑
k

kj ûj(k
′′−k, t)ûi(k, t) = −ik′′i p̂(k

′′, t)−ν|k′′|2ûi(k′′, t) (9.74)

or, renaming the k′′ as k, and the k as k′,

∂ûi
∂t

(k, t) + i
∑
k′

k′j ûj(k − k′, t)ûi(k
′, t) = −ikip̂(k, t)− ν|k|2ûi(k, t) (9.75)

One advantage of the Fourier formalism is that it is very easy to solve for
p̂, using incompressibility. Indeed, dotting the momentum equation with k, we
have

p̂(k, t) = −
∑
k′

klk
′
j

|k|2
ûj(k − k′, t)ûl(k

′, t) (9.76)

(where we renamed the index i into l). As a result, we have

∂ûi
∂t

(k, t) = −i
∑
k′

k′j ûj(k − k′, t)

[
ûi(k

′, t)− ki
kl
|k|2

ûl(k
′, t)

]
− ν|k|2ûi(k, t)

(9.77)
Finally, noting that

k′ · u(k − k′) = −(k − k′) · u(k − k′) + k · u(k − k′) = −k · u(k − k′) (9.78)

then

∂ûi
∂t

(k, t) = i
∑
k′

kj ûj(k − k′, t)

[
ûi(k

′, t)− ki
kl
|k|2

ûl(k
′, t)

]
− ν|k|2ûi(k, t)

(9.79)
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Figure 9.5: Left: two modes creating a higher wavenumber one; Right: two
modes creating a lower wavenumber one.

which can also be rewritten as

∂ûi
∂t

(k, t) = i
∑
k′

kj

[
δil −

kikl
|k|2

]
ûj(k − k′, t)ûl(k

′, t)− ν|k|2ûi(k, t) (9.80)

Note that the tensor

Pil = δil −
kikl
|k|2

(9.81)

is a projection tensor onto the subspace normal to k, therefore guaranteeing
that the quantity in the sum is indeed orthogonal to k, thus guaranteeing in-
compressibility for u at all points in time and space (this is indeed the only role
of pressure in an incompressible fluid).

From this equation, we see that the evolution of a Fourier mode û(k) is
controlled by (1) viscous dissipation, which in Fourier space simply takes the
form −ν|k|2û, and (2) the nonlinear terms, which combine all other Fourier
modes with wavectors k′ and k′′ such that k′+k′′ = k. This is a clear expression
of the energy cascade: modes with smaller wavenumbers can add up to transfer
energy into a higher wavenumber one. But we also see that under the right
circumstances, two high wavenumber modes of almost opposite directions can
add up to feed energy into a low wavenumber mode (see Figure 9.5)

9.3.5 Energetics

We first note that by homogeneity, the kinetic energy density in the flow is
constant and given by

E(t) =
1

2L3

∫ L

0

∫ L

0

∫ L

0

u(x, t) · u(x, t)dxdydz =
1

2

∑
k

û(k, t)û∗(k, t) (9.82)

using the orthogonality property. As such, we can identify

Ê(k, t) =
1

2
|û(k, t)|2 (9.83)
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as the contribution from mode k to the kinetic energy density.
We can therefore construct an energy equation from the Navier Stokes equa-

tion in Fourier space, by using the product rule

∂Ê(k, t)

∂t
=

1

2

(
û(k, t) · ∂û

∗

∂t
(k, t) + û∗(k, t) · ∂û

∂t
(k, t)

)
(9.84)

With a little work, this becomes

∂Ê(k, t)

∂t
= − i

2

∑
k′

kj

[
δil −

kikl
|k|2

]
ûi(k, t)û

∗
j (k − k′, t)û∗l (k

′, t)

+
i

2

∑
k′

kj

[
δil −

kikl
|k|2

]
û∗i (k, t)ûj(k − k′, t)ûl(k

′, t)

−2ν|k|2Ê(k, t)

=
∑
k′

T (k,k′)− 2ν|k|2Ê(k, t) (9.85)

where the function T (k,k′) represents the nonlinear transfer of energy from
mode k′ to mode k (which may be positive or negative). Summing this equation
over all possible values of k must recover the evolution equation for E(t), namely
dE/dt = −ε, which implies that

ε(t) =
∑
k

2ν|k|2Ê(k, t) and
∑
k,k′

T (k,k′) = 0 (9.86)

(Note that both of these equations can also be shown directly by performing
the sum for T , and using the original definitions of ε in real space).

This shows that T is indeed a transfer function (i.e. a function that merely
reshuffles energy between Fourier modes) and that the only actual energy loss
is from the dissipation term. It also shows that dissipation is local in spectral
space, and furthermore demonstrates that the decay rate is quadratic in the
amplitude of the mode wavenumber k, i.e. the decay rate of Ê(k) is 2ν|k|2.
This confirms our intuition of the previous section that dissipation dominates
at small scales (i.e. high wavenumbers).

9.3.6 The relationship between Ê(k) and e(k)

Previously, we defined the function e(k) as the kinetic energy between modes of
amplitude k and k + dk, such that

Etot = V

∫ ∞
0

e(k, t)dk = L3

∫ ∞
0

e(k, t)dk (9.87)

This implies that the kinetic energy density is E =
∫∞

0
e(k, t)dk. In the limit

that L tends to infinity, recall that we can expect the system to become more
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and more isotropic, which implies that Ê(k, t) becomes a function of k = |k|
(and t) only. Let’s rewrite

E =
∑
k

Ê(k, t) =
∑
k

Ê(k, t)

(2π/L)3
dkxdkydkz (9.88)

=
L3

(2π)3

∫ ∫ ∫
Ê(k, t)k2 sin θkdkdθkdφk =

4πL3

(2π)3

∫ ∞
0

Ê(k, t)k2dk

after switching the integral to spherical coordinates in k-space. This identifies

e(k, t) =
L3

2π2
Ê(k, t)k2 (9.89)

(for sufficiently large L). We can verify that this is indeed dimensionally correct.

9.3.7 Relationship with 2-point correlation function

Recall our real-space definition of the two-point correlation function

Φij(r, t) = 〈ui(x + r, t)uj(x, t)〉 (9.90)

where 〈〉 is a statistical average. Being statistically homogeneous, the quantity
is equal to its volume average, so

Φij(r, t) = 〈〈ui(x + r, t)uj(x, t)〉L〉 (9.91)

If we now substitute the Fourier expansions of u, we obtain

Φij(r, t) = 〈〈
∑
k

∑
k′

ûi(k, t) exp(ik · (x + r))ûj(k
′, t) exp(ik′ · x)〉L〉

= 〈
∑
k

ûi(k, t)ûj(−k, t) exp(ik · r)〉 (9.92)

= 〈
∑
k

ûi(k, t)û
∗
j (k, t) exp(ik · r)〉 (9.93)

using orthogonality and the fact that u is real, which shows that the Fourier
transform of Φij(r, t) is

Φ̂ij(k, t) = 〈ûi(k, t)û∗j (k, t)〉 (9.94)

Since Φij(r) is isotropic, so must Φ̂ij(k) also be, which implies (by the same
arguments as put forward earlier) that

Φ̂ij(k, t) = a(k, t)δij + b(k, t)kikj (9.95)

Incompressibility implies that

kiΦ̂ij(k, t) = 〈kiûi(k, t)û∗j (k, t)〉 = 0 (9.96)
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so

kiΦ̂ij(k, t) = a(k, t)kj + b(k, t)|k2|kj = 0→ b(k, t) = −a(k, t)

|k2|
(9.97)

and therefore

Φ̂ij(k, t) = a(k, t)

(
δij −

kikj

|k2|

)
(9.98)

In addition, noting that

〈Ê(k, t)〉 =
1

2
〈ûi(k, t)û∗i (k, t)〉 =

1

2
Φ̂ii(k, t) (9.99)

we see that

Φ̂ii(k, t) = 2a(k, t)→ 〈Ê(k, t)〉 = a(k, t) (9.100)

so

Φ̂ij(k, t) = 〈Ê(k, t)〉
(
δij −

kikj

|k2|

)
(9.101)

Finally, combining this with the definition of e(k) that incorporates the isotropy
of Ê, we have

Φ̂ij(k, t) =
2π2

k2L3
〈e(k, t)〉

(
δij −

kikj
k2

)
(9.102)

This shows, in spectral space, the duality between the two-point correlation
function and the energy spectrum. As such, we see that the energy equation
(9.85) in spectral space must be equivalent to the von Kármán-Howarth equa-
tion, although the actual relationship between the function f(r, t) defined earlier
and e(k, t) remains to be clarified.

To do so, note that on the one hand

1

2
Φii(r, t) =

U2(t)

2r

[
3
∂

∂r
(r2f)− r2 ∂f

∂r

]
=
U2(t)

2r2

∂

∂r
(r3f) (9.103)

but this is also

1

2
Φii(r, t) =

∑
k

1

2
Φ̂ii(k, t) exp(ir · k)

=
∑
k

2π2

k2L3
〈e(k, t)〉 exp(ir · k)

=

(
L

2π

)3 ∫ ∫ ∫
2π2

k2L3
〈e(k, t)〉 exp(ir · k)d3k (9.104)

in the limit of L going to infinity. Since r is fixed in this problem, we can create
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a spherical coordinate system around that axis. As a result,

1

2
Φii(r, t) =

(
1

2π

)3 ∫ ∞
0

∫ π

0

∫ 2π

0

2π2

k2
〈e(k, t)〉 exp(irk cos θr)k

2 sin θrdkdθrdφr

=

(
1

2π

)3 ∫ ∞
0

∫ π

0

4π3

k2
〈e(k, t)〉 exp(irk cos θr)k

2 sin θrdkdθr

=

(
1

2π

)3 ∫ ∞
0

∫ 1

−1

4π3

k2
〈e(k, t)〉 exp(irkv)k2dkdv

=
1

2

∫ ∞
0

〈e(k, t)〉exp(irk)− exp(−irk)

irk
dk

=

∫ ∞
0

〈e(k, t)〉 sin(rk)

rk
dk (9.105)

Combining these two finally yields

U2(t)

2r2

∂

∂r
(r3f) =

∫ ∞
0

〈e(k, t)〉 sin(rk)

rk
dk (9.106)

Multiplying this by r2, we can integrate both sides in r to relate f to e, as

U2(t)

2
r3f(r, t) =

∫ ∞
0

k−1〈e(k, t)〉
[∫ r

0

r′ sin(r′k)dr′
]
dk (9.107)

Since ∫ r

0

r′ sin(r′k)dr′ =
sin(kr)− rk cos(kr)

k2
(9.108)

this becomes

f(r, t) =
2

U2(r)

∫ ∞
0

〈e(k, t)〉 sin(kr)− rk cos(kr)

r3k3
dk (9.109)

Using this, a similar correspondance between the triple correlations in real space
and the transfer function in spectral space, and a lot of algebra, we can finally
recover (should we want to) the von Kárman-Howarth equation.

9.3.8 Integral scale and Taylor microscale

In Section 9.2.3, we defined the integral scale as

LI =

∫ ∞
0

f(r, t)dr (9.110)

It is easy to verity that this is also

LI =
1

2

∫ ∞
0

1

r2

∂

∂r
(r3f)dr (9.111)
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so we write LI is in terms of e(k):

LI =
1

U2(t)

∫ ∞
0

∫ ∞
0

〈e(k, t)〉 sin(rk)

rk
dkdr (9.112)

Now, the integral over r and k can be switched, and since
∫∞

0
x−1 sin(ax)dx =

π/2 if a > 0, then

LI =
π

2U2(t)

∫ ∞
0

〈e(k, t)〉
k

dk =
3π

4〈E〉

∫ ∞
0

〈e(k, t)〉
k

dk (9.113)

which reveals LI to be proportional to the expectation value of k−1 over the
kinetic energy spectrum (which therefore puts preferential weight on the more
energetic eddies).

Similarly, we can revisit the definition of the Taylor microscale λ, which
involves the second derivative of f(r, t) near r = 0. We have

∂2f

∂r2
=

2

U2(t)

∫ ∞
0

k−3〈e(k, t)〉 (12− 5k2r2) sin(kr) + rk(k2r2 − 12) cos(kr)

r5
dk

(9.114)
Taylor expanding the integrand in the vicinity of r = 0 (by hand or using
Wolfram alpha for instance), we finally get

∂2f

∂r2

∣∣∣∣
r=0

= − 2

15U2(t)

∫ ∞
0

k2〈e(k, t)〉dk (9.115)

This is equal to −λ−2, which shows that

λ =

(
2

15U2(t)

∫ ∞
0

k2〈e(k, t)〉dk
)−1/2

(9.116)

Now, recalling that we also have

ε(t) = 2ν
∑
k

|k2|Ê(k, t) (9.117)

we can again take the limit L→∞ to show that

ε(t) = 2ν
L2

(2π)3

∫ ∫ ∫
|k2|Ê(k, t)d3k = 2ν

L3

(2π)3

∫ ∞
0

Ê(k, t)4πk4dk

= 2ν

∫ ∞
0

e(k, t)k2dk

As a result, we can write

λ = U(t)

√
15ν

ε(t)
(9.118)

which recovers exactly the definition we had in the previous section. However,
with this approach, we can see that λ is directly related to the expectation value
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of k2 over the kinetic energy spectrum, to the power of -1/2, i.e. the preferred
dissipation lengthscale. This lengthscale is not η, as we discussed earlier, and
now we can see why: even though k = 1/η is larger, the kinetic energy asso-
ciated with modes of wavenumbers close to η is very small. Instead, most of
the dissipation occurs at a tradeoff wavenumber (which is close to 1/λ) which
is large enough for dissipation to be important, but also small enough for the
kinetic energy of eddies at that wavenumber to be large.

Though this foray into the Fourier interpretation of turbulence, we have there-
fore demonstrated that it yields entirely equivalent results to those obtained
from the statistical view of turbulence. This is not surprising, but provides
confidence in the results derived, as well as means to interpret them in different
ways depending on the lense used.




