
Chapter 9

Turbulence theory
(non-rotating,
non-stratified)

In the previous Chapters, we looked at the linear stability, weakly nonlinear be-
havior and energy stability properties of various fluid systems. What happens
beyond the initial phases of instability, especially when the system is strongly
unstable, was however not addressed, and it is now time to do so. It is generally
the case that when a fluid is strongly unstable (i.e. far beyond the threshold
for instability), the initial instability develops into turbulence. While we all
have an intuitive notion of what turbulence is, mathematically it is somewhat
hard to define. Nevertheless, we usually understand it to have two important
properties: (1) it it nonlinear and chaotic in nature, and (2) it exhibits vari-
ability on a wide range of lengthscales and timescales. The chaotic nonlinear
nature of turbulence makes it generally impossible to analyze analytically in
an exact manner, so the vast majority of studies to date have been numerical
or experimental. And unfortunately, the wide range of timescales and length-
scales involved in a turbulent fluid imply that this problem is numerically very
challenging, and significant progress on that front has only really been possible
in the past 2 decades. Because of the formidable complexity of the problem,
turbulence is generally agreed to be the ”most important unsolved problem of
classical physics” (Feynmann).

In this Chapter, I will describe a few aspects of turbulence. This is by no
means intended to be comprehensive! Instead, I am to provide background
material that will allow the reader to read and understand some of the more
complex recent forays into the problem. I will limit the discussion, for simplicity,
to the case of fluid flows that are neither rotating, nor stratified.

Sections 1 and 2 are based on the textbooks by Davidson (Turbulence) and
Pope (Turbulent flows).
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9.1 Phenomenology

9.1.1 A vast range of scales

One of the few properties of turbulence that most scientists will agree to is that
it contains a vast range of scales. A good example of what a turbulent flow may
be is shown in the figure below, which is of the eruption from Mount Pinatubo
in 1991. The picture shows very clearly that there are dynamics on every scale
from the outer scale (i.e. the size of the entire plume), down to the smallest scale
the eye can see. (Of course, in that picture, the turbulence is both stratified,
probably influenced by the effects of the Earth’s rotation, and by the presence
of ash particles – but it is still a good visual example of the kind of turbulent
dynamics we care about in this Chapter).

Figure 9.1: Photo of the Mount Pinatubo eruption of 1991; from Wikipedia.

The reason why turbulent fluid flows have such a wide range of scales can
easily be understood by considering a 1D equation that is almost the Navier-
Stokes equation but not quite:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(9.1)

This is the viscous Burger’s equation. Let’s consider the following initial condi-
tion: u(x, 0) = sin(x), in the unbounded domain. Then, we see that at a time
t = ∆t later, where ∆t is small,

u(x,∆t) ' u(x, 0) + ∆t

[
−u∂u

∂x
+ ν

∂2u

∂x2

]
t=0

' (1− ν∆t) sin(x)−∆t
sin(2x)

2
(9.2)
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and at a timestep ∆t after that,

u(x, 2∆t) ' u(x,∆t) + ∆t

[
−u∂u

∂x
+ ν

∂2u

∂x2

]
t=∆t

(9.3)

'
[
(1− ν∆t) sin(x)−∆t

sin(2x)

2

]
− ν∆t [(1− ν∆t) sin(x)− 2∆t sin(2x)]

−∆t

[
(1− ν∆t) sin(x)−∆t

sin(2x)

2

]
[(1− ν∆t) cos(x)−∆t cos(2x)]

which will create terms in sin(3x) and sin(4x), and so forth. The nonlinear terms
in this equation clearly create structure on smaller and smaller scales as time
goes by. Of course in this case, solving the Burger’s equation exactly reveals
that the small scale features correspond to the development of a sawtooth profile
(rather than something that would look like a 1D velocity profile of, say, the
Mount Pinatubo eruption). But the general idea that the nonlinearities in the
momentum equation cause energy to transfer from the large scales to the small
scales nevertheless holds.

9.1.2 The energy cascade

Let’s now consider the full incompressible Navier-Stokes equations,

∂u

∂t
+ u · ∇u = − 1

ρm
∇p+ ν∇2u (+F ) (9.4)

together with ∇ · u = 0, to describe the evolution of a turbulent flow. Without
loss of generality, in all that follows we take ρm = 1 (by appropriately choosing
the units of mass). In this flow, the properties of the turbulence can either be
evolving with time after being triggered by some initial conditions, or, can be
maintained in a statistically stationary state by the presence of an external force
F .

We now consider the energetics of the flow. The total kinetic energy equation
derived from (9.4) in the usual way (i.e. dotting the momentum equation with
u) is

∂

∂t

(uiui
2

)
+ uj∂j

(uiui
2

)
= −ui∂ip+ νui∂jjui (+uiFi) (9.5)

using Einstein’s convention of summation over repeated indices. Then, using
the fact that ∂iui = 0, we have

∂

∂t

(uiui
2

)
+ ∂j

(
uj
uiui

2

)
= −∂i(uip) + ν∂j(ui∂jui)− ν(∂jui)(∂jui) (+uiFi)

(9.6)
which can finally be written as

∂E

∂t
+ ∂j(ujE + ujp− ν∂jE) = −ν(∂jui)(∂jui) (+uiFi) (9.7)
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where E =
∑
i u

2
i /2 is the kinetic energy density (kinetic energy per unit volume,

recalling that ρm = 1). Wherever possible, relevant terms were written in
conservative form (i.e. as the divergence of a flux).

This expression clearly shows that the only non-conservative terms (on the
right-hand-side) are the local kinetic energy production rate from the body force
(namely u · F ) if the latter is present, and the local kinetic energy dissipation
rate

ε = ν(∂jui)(∂jui) = ν|∇u|2 (9.8)

All the other terms represent energy fluxes (diffusive or advective), which merely
move energy around in space, and disappear when integrated over a sufficiently
large volume with appropriate boundary conditions. From an energetic point of
view, we therefore see that energy is input on the large scales (assuming the body
force F , or the initial conditions, are relatively large scale), but is dissipated
mostly on the small scales, because the energy dissipation rate ν|∇u|2 depends
on velocity gradients (which are largest on the smaller scales, see later for more
on this topic).

Combining the ideas of nonlinear production of small scales, together with
the fact that energy is produced on large scales and dissipated on small scales,
Richardson introduced the notion of a turbulent energy cascade. He assumed
that the turbulence can be viewed as being made of eddies. On the largest
scales, eddies have size L and velocity U (associated with the forcing or initial
conditions) and do not feel the viscosity. In other words, their Reynolds number
ReL = UL/ν, which we recall from previous lectures is the ratio of the nonlinear
terms to the viscous terms, is much smaller than 1. The eddies become unstable,
nonlinearly giving rise to smaller scale eddies (see Figure 9.2) to whom they
transfer energy. This transfer continues until the eddies are so small that their
own Reynolds number Rel (based on their small scale l and velocity u(l)) is of
order unity, and viscous effects finally become important and stabilize them.

Nonlinear	
transfer	

Nonlinear	
transfer	

Mechanical	
energy	input	rate	

Viscous	energy	
dissipation	rate	

ReL>>1	

Rel=O(1)	

U,L	

u,l	

Figure 9.2: Richardon’s idea of energy cascade
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From an energetic point of view, and assuming the turbulence is in a statis-
tically stationary state, this idea implies that the energy that is mechanically
introduced in a fluid on the large scales (often called the injection scale), must
then be transferred through the turbulent cascade without any loss, until the
viscous scale is reached and energy can finally be dissipated viscously. As such,
the rate of kinetic energy input into the system must be equal to the transfer
rate from large scales to small scales, which must in turn be equal to the viscous
dissipation rate ε, and this quantity therefore uniquely characterizes the kinetic
energy transfer rate through the system. Note that in a statistically stationary
state, ε is constant, but in a run-down experiment, ε is a function of time.

9.1.3 Kolmogorov’s hypotheses

Enters Kolmogorov, who went on to propose several hypotheses to model the
turbulence. Following Richardson, he assumed that there are three distinct
ranges of scales in (non-rotating, non-stratified) turbulence:

• The outer scales, i.e. any scale that is sufficiently large to know about
the boundary conditions applied to the fluid, or the overall shape of the
system.

• The viscous scales, i.e. any scale that is sufficiently small to be affected
by viscosity

• The inertial scales, i.e. any scale in between that is both sufficiently small
to be unaware of the global system scales, yet large enough to be unaffected
by viscosity.

In addition, he assumed that far from the outer scale (and in the absence of
rotation or stratification) the turbulence should be homogenous and isotropic,
implying (among other things) that a single lengthscale is sufficient to charac-
terize an eddy.

Turbulent eddies in the inertial range, being unaware of either viscosity or
the outer scale, can only know about their own lengthscale l and their own
velocity scale u(l). From a dimensional perspective, the only way to create
a kinetic energy transfer rate (whose dimension is velocity squared over time)
from these two quantities is:

ε ∝ u3

l
(9.9)

showing that the velocity of an eddy of scale l has to be

u(l) ∝ (lε)1/3 (9.10)

From that, we can also construct the turnover time of an eddy of scale l as

τ(l) =
l

u(l)
∝
(
l2

ε

)1/3

(9.11)
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We therefore see that both u and τ decrease with the scale l (so the eddies are
slower, but turn over faster)

While not exactly applicable there, this formula must nevertheless smoothly
match onto the properties of the outer scales, so we also expect that as l→ L,

ε ' U3

L
(9.12)

As such, we then also have

u(l) ' U
(
l

L

)1/3

(9.13)

τ(l) =
L

U

(
l

L

)2/3

(9.14)

and the Reynolds number based on the scale l is then

Rel =
u(l)l

ν
= ReL

(
l

L

)4/3

(9.15)

At the other end of the cascade, the flow begins to know about viscosity. As
such, it is now aware of two dimensional quantities, namely ε and ν. With two
dimensional quantities, it is now possible to construct a unique characteristic
lengthscale, velocity scale and timescale using dimensional analysis. Indeed,
since ε has the dimension of a velocity squared over time (or equivalently, length
squared over time cubed), and since ν has dimension of length squared over time,
we can create these as

τη =
(ν
ε

)1/2

is the Kolmogorov timescale

η =

(
ν3

ε

)1/4

is the Kolmogorov lengthscale

uη = (εν)1/4 is the Kolmogorov velocity scale (9.16)

Note that although these definitions were created purely from a dimensional
argument, we have

Reη =
uηη

ν
= 1 (9.17)

showing that η is indeed the scale at which viscous effects are important. We
therefore also have

ReL

( η
L

)4/3

= 1→ η

L
= Re

−3/4
L (9.18)

and so

uη
U

=
( η
L

)1/3

= Re
−1/4
L (9.19)

τη
L/U

=

(
l

L

)2/3

= Re
−1/2
L (9.20)
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which all characterize the ratios of the small (length-, velocity-, time-) scales in
the system to their corresponding outer scales. It is clear from these scalings
that the larger the Reynolds number ReL, the wider the separation between the
outer scales and the viscous scales.

9.1.4 The turbulent energy spectrum

While based on very simple dimensional arguments, this first glimpse into Kol-
mogorov’s theory of turbulence (which goes far beyond this) already provides
enormous insight into many observations of real turbulent flows, in particular
when it comes to the so-called turbulent energy spectrum. It is quite common to
consider the amount of energy between wavenumber k and wavenumber k+ dk,
written as e(k)dk. With this definition, the total kinetic energy in a homoge-
neous isotropic system is simply

Etot = V

∫ ∞
0

e(k)dk (9.21)

(again, recalling that ρm = 1), where V is the total volume considered. From
a dimensional perspective, e(k) has the dimension of a velocity squared divided
by a wavenumber (so e(k)dk has the dimension of a velocity squared). In Kol-
mogorov’s theory, we found that an eddy of size l has a velocity u(l) ∝ (εl)1/3

so a kinetic energy ∝ (εl)2/3 ∝ ε2/3k−2/3. Hence, dimensionally speaking, we
must have e(k) ∝ ε2/3k−2/3/k = ε2/3k−5/3. This is the famous k−5/3 law of
turbulence. It is appropriate for isotropic turbulence in the inertial range in
between the outer and viscous scales, which are 1/L and 1/η in wavenumber
space. As a result, we expect an energy spectrum e(k) that looks like the one
in Figure 9.3a.
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Figure 9.3: Left: Idealized Kolmogorov spectrum, between injection wavenum-
ber 1/L and Kolmogorov wavenumber 1/η. Right: Actual spectrum of a
ReL = 600 unstratified shear flow triply-periodic DNS. Note that η/L = 1/120
for this Reynolds number. kz here is in units of L−1.

For comparison, Figure 9.3b shows the actual energy spectrum as a function
of vertical wavenumber kz of a 3D Direct Numerical Simulation of an unstratified
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shear flow, forced on the largest scale (L = 2π), with ReL = 600. We clearly see
a well-defined cascade with the k−5/3 law, for kz between 1 and 10. With this
outer Reynolds number, we expect η = L/120, so the Kolmogorov wavenumber
in this simulation (and with this non-dimensionalization) should be about 120.
We therefore see that the energy density begins deviating away from the k−5/3

law substantially before the Kolmogorov scale. More on this later.

9.2 Statistical theory of turbulence

Given that most turbulence studies in the past were done using laboratory or
in-situ experiments, it was not possible to measure the full velocity field at every
point in time and space. Instead, it was common to measure the fluid velocity
as a function of time, at well-defined positions in the fluid, using fixed velocity
probes. As such, an important focus of many early studies of turbulence theory
was concerned with statistical properties of these time series, and in particular,
the correlation functions of the fluid flow, which are relatively easy to measure.
In this section, we will study what predictions Kolmorogov’s assumptions of
homogeneous isotropic turbulence with a well-defined inertial range imply for
these statistical properties of the turbulence.

9.2.1 Definitions

Let’s assume we are able to perform the same experiment over and over again,
and each time measuring flow quantities at various points in the flow, as a
function of time. We can construct statistical averages of the measurements,
such as for instance the rms value of the various components of the velocity u
at a point x, and time t, as

Ux,rms(x, t) = 〈u2
x(x, t)〉1/2, (9.22)

Uy,rms(x, t) = 〈u2
y(x, t)〉1/2, (9.23)

Uz,rms(x, t) = 〈u2
z(x, t)〉1/2, (9.24)

where the angular bracket represents an average over many different realizations
of the same experiment (note here that we have assumed for simplicity that
there is no mean flow so 〈u(x, t)〉 = 0). Without further information on the
turbulence, these quantities will be functions of position and time.

We can also define the two-point correlation function

Φij(x, r, t) = 〈ui(x + r, t)uj(x, t)〉 (9.25)

where the indices i and j represent the various directions (x,y or z). This
quantity, as its name suggests, measures how correlated ui and uj are a distance
r away from one another. Without any further information on the turbulence,
this tensor will be a function of position x, of the separation between the two
points r, and time.
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9.2.2 Homogeneous isotropic turbulence

As we now demonstrate, Kolmorogov’s assumptions of homogeneous isotropic
turbulence strongly constraints the statistical properties of the turbulence. In-
deed if the turbulence is homogenous, all of its statistics must be independent
of where the measurements are taken. As a result, the rms velocities and the
tensor Φij cannot depend on position x, so Ux,rms(x, t) = Ux,rms(t), and sim-
ilarly for the other components, and Φij(x, r, t) = Φij(r, t). Interestingly, we
see that when r = 0 then∑

i

Φii(0, t) = 〈u2
x + u2

y + u2
z〉 = U2

x,rms(t) + U2
y,rms(t) + U2

z,rms(t) = 2〈E(t)〉

(9.26)
is twice the statistically averaged kinetic energy density (i,e, kinetic energy per
unit volume) of the fluid. That quantity is independent of position, by the
assumption of homogeneity.

If the turbulence is isotropic as well (which is assumed here), then by def-
inition it has no distinct direction. This implies that 〈u2

x〉 = 〈u2
y〉 = 〈u2

z〉, and
we will therefore define

U(t) = 〈u2
x〉1/2 =

√
〈2
3
E(t)〉 (9.27)

as the 1D rms velocity (i.e. the rms velocity of a single component of u).
The function Φij(r, t) must also be isotropic (i.e. invariant with respect to any
rotation of the coordinate system); as such, it can only depend on the magnitude
of r and not its direction. It has been shown that the only possibility for creating
an isotropic tensor that is function of a vector r is as

Φij(r, t) = A(r, t)δij +B(r, t)rirj (9.28)

Without loss of generality (since the system is isotropic) we can take r to be
(for instance) in the x direction. Then, the only non-zero entries of Φ are the
diagonal terms, which are

Φxx(rex, t) = A(r, t) +B(r, t)r2

Φyy(rex, t) = Φzz(rex, t) = A(r, t) (9.29)

The quantity Φxx(r, t) is proportional to the normalized longitudinal autocor-
relation function, which is the autocorrelation of the velocity field u projected
along the direction r, usually called f(r, t) and generally defined as

f(r, t) =
〈[u(x + r, t) · er] [u(x, t) · er]〉

〈[u(x, t) · er]2〉
(9.30)

Because of isotropy, we can take r to be in any direction, so let’s choose r =
rex. In that case, the denominator is just U2(t), while the numerator is just
Φxx(rex, t). This then implies Φxx(rex, t) = A(r, t) + B(r, t)r2 = f(r, t)U(t)2.
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The quantity Φyy(r, t) is similarly proportional to the normalized transverse
autocorrelation function of the velocity field u (i.e. the autocorrelation function
of flow in the direction perpendicular to r), usually called g(r, t), as

Φyy(rex, t) = A(r, t) = g(r, t)U2(t) (9.31)

Using these identities, we can rewrite Φij in terms of the functions U(t), f(r, t)
and g(r, t) as

Φij(r, t) = U2(t)
[
g(r, t)δij + (f(r, t)− g(r, t))

rirj
r2

]
(9.32)

So far, we have only used symmetries of the problem. We can also use
continuity, i.e. ∇ · u = 0 to further constrain the form of Φij . Indeed, we have
that ∑

i

∂

∂ri
〈ui(x + r, t)uj(x, t)〉 =

∑
i

〈 ∂
∂ri

ui(x + r, t)uj(x, t)〉 = 0 (9.33)

which implies that∑
i

∂

∂ri
Φij(r, t) =

∑
i

U2(t)

[
∂g

∂r

∂r

∂ri
δij +

∂

∂r
(f(r, t)− g(r, t))

rirj
r2

∂r

∂ri

−2(f(r, t)− g(r, t))
rirj
r3

∂r

∂ri
+ (f(r, t)− g(r, t))

rj
r2

+ (f(r, t)− g(r, t))
ri
r2
δij

]
= 0(9.34)

Since ∂r/∂ri = ri/r, and
∑
i r

2
i = r2, we can simplify this to

∂g

∂r

rj
r

+
∂

∂r
(f(r, t)− g(r, t))

rj
r
− 2(f(r, t)− g(r, t))

rj
r2

+ 4(f(r, t)− g(r, t))
rj
r2

= 0

(9.35)
This then yields an equation for g(r, t):

∂

∂r
f(r, t) + 2

f(r, t)− g(r, t)

r
= 0 (9.36)

or in other words,

g(r, t) = f(r, t) +
r

2

∂

∂r
f(r, t) =

1

2r

∂

∂r
(r2f) (9.37)

so finally,

Φij(r, t) =
U2(t)

2r

[
∂

∂r
(r2f)δij −

∂

∂r
f(r, t)rirj

]
(9.38)

This relationship is very important because it shows that all of the 2-point
correlation information in homogeneous isotropic incompressible turbulence can
be captured by knowing a single function, namely f(r, t). This does not tell us
what that function is, but instead, states that this function is the only one
needed to characterize this information.
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Finally, combining the fact that f is a nondimensional function – and should
therefore be written as a function of non-dimensional quantities only – with
Kolmogorov’s assumption that in the inertial range or below, the system can
only know about either ν or ε, we deduce that the function f must be of the
form

f(r, t) = f̂

(
r

η
,
t

τη

)
= f̂(r̂, t̂) (9.39)

as long as r � L. This is indeed found experimentally.

9.2.3 The integral scale and the Taylor microscale

From the function f(r, t), which is dimensionless by construction, we can con-
struct at least two important lengthscales associated with the flow. The first
one is called the integral scale, and it is a good measure of the lengthscale of
energy bearing eddies at any point in time:

LI(t) =

∫ ∞
0

f(r, t)dr (9.40)

(it is easy to verify that this indeed has the dimensions of a length, since dr is
a length). A nice physical interpretation of this lengthscale will emerge when
looking at Fourier representations of the flow, see later.

A second important lengthscale is the Taylor1 microscale, which is derived
from the Taylor2 expansion of f(r). First, noting that f(0, t) = 1 by construc-
tion, and that f(r, t) = f(−r, t) because of isotropy, we have

f(r, t) = 1− r2

2λ2
+ ... (9.41)

where

λ−2 = − ∂2f

∂r2

∣∣∣∣
r=0

(9.42)

Dimensionally speaking, λ is a lengthscale. Going back to the relationship

1After G.I. Taylor
2After B. Taylor
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between f and Φxx(rex, t), namely Φxx(rex, t) = f(r, t)U(t)2, we also see that

∂2f

∂r2

∣∣∣∣
r=0

= U(t)−2 lim
r→0

∂2

∂r2
Φxx(rex, t)

= U(t)−2 lim
r→0
〈 ∂

2

∂r2
ux(x + rex, t)ux(x, t)〉

= U(t)−2 lim
r→0
〈 ∂

2ux
∂x2

∣∣∣∣
x+rex,t

ux(x, t)〉

= U(t)−2〈 ∂
2ux
∂x2

∣∣∣∣
x,t

ux(x, t)〉

= U(t)−2〈 ∂
∂x

(
ux
∂ux
∂x

)
−
(
∂ux
∂x

)2

〉

= U(t)−2 ∂

∂x
〈ux

∂ux
∂x
〉 − 〈

(
∂ux
∂x

)2

〉

= −U(t)−2〈
(
∂ux
∂x

)2

〉 (9.43)

where we have used homogeneity to note that spatial derivatives of any flow
statistic should be 0. Finally, it can be shown that the kinetic energy dissipa-
tion ε introduced in the previous section is directly related to 〈(∂ux/∂x)

2〉 in
homogeneous isotropic turbulence (see for instance exercise 5.28 page 133 in the
Pope textbook), as

ε(t) = 15ν〈
(
∂ux
∂x

)2

〉 (9.44)

As a result, the Taylor microscale λ introduced earlier can be expressed only as
a function of the dissipation ε(t) and the rms 1D velocity U(t) as

λ(t) = U(t)

√
15ν

ε(t)
(9.45)

An important consequence of this relationship is that it can help measure ε
using only pointwise velocity measurements at nearby positions in the fluid (to
compute the longitudinal two-point correlation function f(r, t), and then its
curvature at r = 0 to measure λ).

Note that the Taylor microscale, despite knowing about both ν and ε, is not
the same as the Kolmogorov scale. To see this,

λ

η
= U

√
15ν

ε

ε1/4

ν3/4
=
√

15U(εν)−1/4 =
√

15
U

uη
=
√

15Re
1/4
L (9.46)

As such, for large enough ReL, λ � η. For the simulation presented in Figure
9.3b, for instance, λ =

√
15(6001/4)η ' 20η. We see that this corresponds to

a wavenumber that is close to the place where the spectrum begins to deviate
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away from the Kolmogorov law. As such, it is often said that the inertial range
ends around λ−1 (rather than around η−1), and that the quantity of relevance
to determine whether the flow has a turbulent cascade or not is

Reλ =
u(λ)λ

ν
=
u(λ)

U

λ

L
ReL =

(
λ

L

)4/3

ReL

=

(
λ

η

)4/3

= 152/3Re
1/3
L (9.47)

If Reλ � 1, then a substantial cascade can indeed be present.

9.2.4 A statistical view of the Navier-Stokes equations

So far, all of the properties we have derived concerning the tensor Φij were made
purely based on arguments of symmetry and incompressibility, without ever
making use of the fact that the flow field u actually has to satisfy the governing
equation (9.4). Using the Navier-Stokes equations, however, it is possible to
derive a constraint on the evolution of the function f(r, t), as demonstrated
by von Kármán & Howarth (1938). The full derivation is quite complicated,
and I encourage you to look at the original paper for detail. The general lines,
however, go as follows. Let’s focus on the case of decaying turbulence, ie. F = 0,
for simplicity.

First, note that

∂

∂t
Φij(r, t) = 〈ui(x, t)

∂

∂t
uj(x + r, t)〉+ 〈uj(x + r, t)

∂

∂t
ui(x, t)〉 (9.48)

Using the Navier-Stokes equations and incompressibility, as well as a large num-
ber of algebraic manipulations this becomes

∂Φij
∂t

=
∂

∂rk
(Sikj + Sjki) + 2ν∇2

rΦij (9.49)

where ∇r is the gradient with respect to r = (rx, ry, rz), and where we have
introduced the three-point correlation tensor

Sijk(r, t) = 〈ui(x, t)uj(x, t)uk(x + r, t)〉 (9.50)

which, by assumptions of homogeneity, is independent of x.
Arguments of homogeneity and isotropy similar to the ones given for the

tensor Φij earlier imply that it is possible to write Sijk in terms of a single
function K(r, t) only, namely

K(r, t) =
Sxxx(rex, t)

U3(t)
(9.51)

such that

Sijk(r, t) = U

[
K − rK ′

2r3
rirjrk +

2K + rK ′

4r
(riδjk + rjδik)− K

2r
rkδij

]
(9.52)
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where K ′ = ∂K/∂r. Substituting this into the evolution equation for Φij
(and using the equation relating Φij to f(r, t)), we then obtain the famous
von Kármán-Howarth equation for homogeneous isotropic turbulence:

∂

∂t

[
U2(t)f(r, t)

]
=
U3(t)

r4

∂

∂r
[r4K(r, t)] + 2ν

U2(t)

r4

∂

∂r

(
r4 ∂f

∂r

)
(9.53)

This is complemented by the evolution equation for U(t), that can be derived
for instance by taking the statistical average of the energy equation (9.7):

∂

∂t
〈E〉+ 〈∂j(ujE + ujp− ν∂jE)〉 = −〈ν(∂jui)(∂jui)〉 (9.54)

Noting that the derivative and the statistical average commute, and that the
spatial gradients of the statistical averages must be 0, we simply have

∂U2

∂t
= −2

3
ε(t) (9.55)

There is, however, no evolution equation for K(r, t) at this order. We therefore
see that while the von Kármán-Howarth equation is exact, it suffers from a
closure problem – K(r, t) must be known to evolve f(r, t), but it isn’t. Attempts
to create an evolution equation for K(r, t) would only result in the appearance
of a 4th order tensor, and a corresponding 4-th order correlation function. We
will return to the closure problem later in this Chapter.

Looking at the von Kármán-Howarth equation, we see that there are two
terms, which have clear interpretations: the term containing ν arises from the
viscous stress term, and therefore describes the effect of viscosity on the evolu-
tion of f . The term containing K, on the other hand, comes from the nonlinear
terms in the momentum equation and must therefore describe all inertial pro-
cesses (including the cascade of energy to smaller scales).

In the limit where inertial terms are negligible (i.e. for instance, in the very
final phases of the turbulent decay of energy), then the equation becomes

∂

∂t

[
U2(t)f(r, t)

]
' 2ν

U2(t)

r4

∂

∂r

(
r4 ∂f

∂r

)
(9.56)

so, using (9.55)

U2 ∂f

∂t
− 2

3
εf ' 2ν

U2(t)

r4

∂

∂r

(
r4 ∂f

∂r

)
(9.57)

where, from the discussion of the Taylor microscale, we had

ε = −15νU2 ∂
2f

∂r2

∣∣∣∣
r=0

(9.58)

Substituting one into the other, we see that U2 disappears, leaving

∂f

∂t
' 2ν

1

r4

∂

∂r

(
r4 ∂f

∂r

)
− 10fν

∂2f

∂r2

∣∣∣∣
r=0

(9.59)
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It’s easy to show (by substitution) that there exists an exact solution to this
equation, namely

lim
t→∞

f(r, t) = exp

(
− r2

8νt

)
(9.60)

We note that this expression satisfies (9.39), as required.
We then have

λ =

(
∂2f

∂r2

∣∣∣∣
r=0

)−1/2

= 2
√
νt (9.61)

from which we deduce

ε(t) =
15

4

U2(t)

t
(9.62)

Substituting this into the evolution equation for U2, we finally get

dU2

dt
= −2

3
ε(t) = −5

2

U2(t)

t
→ U2(t) ∝ t−5/2 (9.63)

In other words, in the final stages of decay of turbulence, we expect the total
kinetic energy to decay as t−5/2.

Finally, it is important to note that various other properties of the statistics
of the flow can be derived using similar lines of argument, the most important
of which is the well-known Kolmogorov four-fifth law for the three point corre-
lations, which states that for η � r � L (i.e. for r within the inertial range),
then

〈|ui(x + r, t)− ui(x, t)|3〉 = −4

5
εr (9.64)

(where i can be any direction, since the flow is isotropic), see textbooks for
detail.

Many of these laws have been successfully tested in DNS of homogeneous
isotropic turbulence at high Reynolds number, as well as in laboratory experi-
ments, for which a sufficiently wide inertial range exists.


