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6.5 Linear theory for stratified shear flows (in-
viscid case)

In the previous sections, we only looked at unstratified shear flows, i.e, flows of
constant density ρ0, where gravity plays no role in the momentum equation. We
now include the effects of stratification by considering a background stratified
fluid of density ρ̄(z), in hydrostatic equilibrium so that

∂p̄

∂z
= −ρ̄(z)g (6.67)

We shall further assume that the fluid is stably stratified, i.e. that ρ̄(z) decreases
with height, so that the system is not convectively unstable. Stratified shear
flows are extremely common in geophysics and astrophysics. For instance, parts
of the Earth’s atmosphere are stably stratified, and are subject to winds – a
classical example of a stratified shear flow. Similarly, many regions of the ocean
are stably stratified and subject to currents.

We saw earlier that in the absence of stratification, shear instabilities are
energetically possible (as determined from energy stability arguments) as long
as the Reynolds number is large-enough, but the details of what makes a flow
linearly stable or unstable are quite complex. Let us now see what happens to
shear instabilities when a stable stratification is present.

6.5.1 Energetics of stratified shear flows

As in the previous lecture, we can first look at the energetics of stratified shear
instabilities to determine the conditions under which they are, at least approx-
imately, favorable or unfavorable. Let’s consider two parcels of fluid in a shear
flow ū(z) = ū(z)ex, stratified with the background density profile ρ̄(z), shown
in Figure 6.6. The lower parcel is at z = 0 and the upper parcel is at z = ε. We
ask the question again of whether a mixing event increases or lowers the total
energy of the system. If the total energy increases, this means that energy has to
be provided for the mixing event to proceed, which is therefore an unfavorable
configuration for the development of instabilities. On the other hand if the total
energy is lowered in the mixing event, the shear instabilities are energetically
favorable.

In the situation considered here, the mixing event homogenizes both the
density and the momentum of the two parcels2. Hence, if the two parcels have
densities ρ̄(0) and ρ̄(ε) respectively, then after the event their common density
is ρm where

ρm =
1

2
(ρ̄(0) + ρ̄(ε)) (6.68)

2You may wonder why it is the momentum, rather than the velocities that are homogenized.
That’s because, at the heart of fluid dynamics, are the two conservation equations for mass (or
density) and momentum. Mixing events are merely events that stir the fluid while conserving
these quantities.
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Figure 6.6: Energetics of stratified shear flows. A mixing event homogenizes the
density of the two parcels, as well as their momenta

Similarly, if the two parcels initially have momenta ρ̄(0)ū(0) and ρ̄(ε)ū(ε), after
the event they both have the same momentum ρmum, where

ρmum =
1

2
(ρ̄(0)ū(0) + ρ̄(ε)ū(ε)) (6.69)

which defines what um is.
Let’s now calculate the total energy of the system, which now has contri-

butions both from the kinetic energy 1
2 ρ̄ū

2, and from the potential energy ρ̄gz.
Before the mixing event, the energy is

Ei =
1

2

(
ρ̄(0)ū(0)2 + ρ̄(ε)ū(ε)2

)
+ gερ̄(ε) (6.70)

while after the event
Ef = ρmu

2
m + ρmgε (6.71)

Using successive Taylor expansions for small ε, and lots of algebra, one can
then show that

∆E = Ei − Ef '
ε2

2

(
1

2
ρ̄(0)ū′(0)2 + gρ̄′(0)

)
(6.72)

This expression can be interpreted in two equivalent ways. We saw that in the
absence of stratification, shear instabilities are always energetically favorable.
We now see that they remain energetically favorable in the presence of an un-
stable density gradient ρ′(0) > 0 (which is really not surprising), but can be
stabilized by a sufficiently strong negative (i.e. stable) density gradient. Alter-
natively, (6.72) can also be interpreted to mean that instabilities on a stably
stratified flow can be energetically favorable provided the shear ū′(0) is suffi-
ciently strong.

6.5.2 The Richardson number for stratified shear flows

The results of the previous section suggest that whether stratified shear flows
are stable or unstable depends on the non-dimensional ratio

gρ̄′

ρū′2
=
N2

S2
≡ J(z) (6.73)
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recalling that N2 can also be written as N2 = gρ̄′/ρ. This number is called the
Richardson number (after Richardson). Because J is based on local gradients,
it is often called the gradient Richardson number.

The Richardson number, as we saw, is related to the ratio of the potential
energy lost while moving density around, to the kinetic energy gained from
the shear. For instability to occur, J should be smaller than a factor of order
unity, while stability is likely when J is larger than unity. It is important to
realize, however, that these are just approximate arguments based on energetic
considerations. They do not replace a thorough linear stability analysis, nor do
they provide any rigorous results on energy stability. However, they give us a
good idea of what to expect next!

6.5.3 Global stability analysis of inviscid, non-diffusive
stratified shear flows

Having briefly studied the stability of unstratified fluids, we now go back to
look at the case of stratified flows, ignoring viscosity and thermal dissipation
for simplicity. We consider fluids that have a background density profile ρ̄(z) =
ρ0zz, and a background shear flow ū(z). We use the Boussinesq approximation
in which the density perturbations are related to the temperature perturbations
as ρ̃/ρ0 = −αT̃ , and the background temperature profile T̄ is similarly related
to ρ̄ so that T̄ (z) = T0zz.

Following similar steps as we did for the global analysis of Section 6.3 we
find that perturbations satisfy

∂ũ

∂x
+
∂w̃

∂z
= 0

∂ũ

∂t
+ ū(z)

∂ũ

∂x
+ w̃

dū

dz
= −∂p̃

∂x
∂w̃

∂t
+ ū(z)

∂w̃

∂x
= −∂p̃

∂z
+ αgT̃

∂T̃

∂t
+ ū(z)

∂T̃

∂x
+ w̃T0z = 0 (6.74)

Letting q̃ = q̂ exp(ikxx+ λt), we get

ikxû+
dŵ

dz
= 0

λû+ ikxū(z)û+ ŵ
dū

dz
= −ikxp̂

λŵ + ikxū(z)ŵ = −dp̂
dz

+ αgT̂

λT̂ + ikxū(z)T̂ + ŵT0z = 0 (6.75)
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The usual steps (eliminating p̂, then û), yield a coupled system for ŵ and T̂ :

(λ+ ikxū(z))

(
d2ŵ

dz2
− k2

xŵ

)
− ikxŵ

d2ū

dz2
= −k2

xαgT̂

(λ+ ikxū(z))T̂ + ŵT0z = 0 (6.76)

so that

(λ+ ikxū(z))2

(
d2ŵ

dz2
− k2

xŵ

)
− ikx(λ+ ikxū(z))ŵ

d2ū

dz2
= N2k2

xŵ (6.77)

where N2 = αgT0z. If λ = −ikxc, then we obtain the Taylor-Goldstein equation:

(ū(z)− c)
(
d2ŵ

dz2
− k2

xŵ

)
− ŵ d

2ū

dz2
+

N2

ū(z)− c
ŵ = 0 (6.78)

This equation reduces to the Rayleigh equation when there is no stratification
(N = 0).

As usual, there are unstable modes provided there exist solutions with =(c) >
0. As in the case of inviscid shear flows, we can easily show that if a solution
ŵ exists with eigenvalue c, then ŵ∗ is also a solution with eigenvalue c∗ –
which means, as before, that there are either neutral modes (=(c) = 0), or
complex conjugate pairs of modes with one of them being unstable. The actual
eigenmodes and their eigenvalues, however, must usually be found numerically.

Interestingly, a sufficient condition for stability, i.e. for the non-existence of
modes with =(c) > 0 is due to Miles and Howard. They proved that a stratified
shear flow is stable provided

N2(z) >
1

4

(
dū

dz

)2

(6.79)

everywhere in the fluid. This can be rewritten as: A necessary condition for
instability is that

J(z) <
1

4
somewhere in the fluid (6.80)

where J(z) is the gradient Richardson number defined in equation 6.73. This
criterion is often called the Richardson criterion for instability. Note that J(z) <
1
4 somewhere in the fluid does not guarantee instability – i.e. it is not a sufficient
condition for instability, merely a necessary one. On the other hand, most flows
are usually indeed destabilized as soon as the minimum value of J in the domain
considered drops below a certain value, which is usually not very far below 1/4.

The general proof of this theorem is due to Howard. Starting from the
Taylor-Goldstein equation, Howard suggested the following change of variable:

H =
ŵ√

ū(z)− c
(6.81)
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With this new variable, the equation can be cast in the self-adjoint form

d

dz

[
(ū(z)− c)dH

dz

]
−
[
k2
x(ū(z)− c) +

1

2
ū′′ +

1
4 (ū′)2 −N2

ū(z)− c

]
H = 0 (6.82)

While this appears to make the equation look more, rather than less, compli-
cated, this self-adjoint form is very useful. Indeed, let us multiply the equation
by the complex conjugate of H, and integrate it with respect to z.

∫ z2

z1

H∗
d

dz

[
(ū(z)− c)dH

dz

]
−
[
k2
x(ū(z)− c) +

1

2
ū′′ +

1
4 (ū′)2 −N2

ū(z)− c

]
|H|2 = 0

(6.83)
We now integrate the first term by parts. With standard boundary conditions
where ŵ vanishes on the boundaries, the boundary terms are zero, and we are
left with

∫ z2

z1

(ū(z)− c)
∣∣∣∣dHdz

∣∣∣∣2 +

[
k2
x(ū(z)− c) +

1

2
ū′′ +

1
4 (ū′)2 −N2

ū(z)− c

]
|H|2 = 0 (6.84)

The imaginary part of this equation is

cI

∫ z2

z1

∣∣∣∣dHdz
∣∣∣∣2 + k2

x|H|2 = cI

∫ z2

z1

1
4 (ū′)2 −N2

|ū(z)− c|2
|H|2 (6.85)

where cI is the imaginary part of c. In order to have instability, we have to have
a non-zero cI . Since the LHS is strictly positive, this means that the RHS must
also be strictly positive. A necessary condition for this to happen is that the
quantity

1

4
(ū′)2 −N2 > 0 (6.86)

somewhere in the domain. This is equivalent to (6.80) and therefore proves the
theorem.

It is therefore interesting, but not too surprising, to see that the general
necessary condition for linear instability (namely J < 1/4) is pretty similar to
the hand-waving energy argument put forward in the previous section!

6.5.4 Example: the stratified Bickley jet.

Let’s go back to the case of the Bickley jet and see what the effect of stratification
on the instability is. The real and imaginary components of the Taylor-Goldstein
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equation are:

(ū(z)− cR)

(
d2ŵR
dz2

− k2
xŵR

)
+ cI

(
d2ŵI
dz2

− k2
xŵI

)
−ŵRū′′(z) +N2 (ū(z)− cR)ŵR − cIŵI

|ū(z)− c|2
= 0

(ū(z)− cR)

(
d2ŵI
dz2

− k2
xŵI

)
− cI

(
d2ŵR
dz2

− k2
xŵR

)
−ŵI ū′′(z) +N2 (ū(z)− cR)ŵI + cIŵR

|ū(z)− c|2
= 0 (6.87)

Figure 6.7 shows the solution cI of this eigenvalue problem, for the varicose
mode, for increasing values of the stratification as measured by N2. We see
that as N2 increases, cI (and therefore the growth rate as well, since the latter
is equal to kx times cI) decreases. This is a very typical result that is true in
almost all situations, and is consistent with our basic physical interpretation of
the instability: the larger N2 is, the stronger the background density gradient,
and the higher the potential energy cost of the perturbations to the flow. For
large enough N2, we expect the instability to be stabilized altogether3.
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Figure 6.7: Imaginary part of c for the varicose mode of the Bickley jet for
increasing values of N2.

6.5.5 The effect of viscosity and diffusion on stratified
shear instabilities

In what we have done so far, both viscosity and the effect of diffusion (of tem-
perature, or of whatever scalar is responsible for the density stratification) were
neglected.

3Figure to be updated with larger values of N2
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Generally speaking, including viscosity has a stabilizing effect on the insta-
bility, either reducing its growth rate, or suppressing it entirely depending on
the value of the Reynolds number. In fact, it can be shown with some effort
that the energy stability criterion for unstratified shear flows is the same as the
one for stratified shear flows, showing that energy stability is possible provided
the Reynolds number is small enough.

The effect of thermal diffusion, on the other hand, goes the opposite way: dif-
fusive stratified shear flows are generally more unstable than their non-diffusive
counterparts. To understand why this is the case, note that diffusion has a ten-
dency to smear out any density perturbations, so that any parcel of fluid slowly
moved up into a less dense region will, over time, also become less dense, and any
parcel slowly moved down into a denser region will, over time, become denser.
As a result, the potential energy cost of any vertical fluid motion is less than
the one estimated from assuming that the parcels retain their original densities
while moving. This has the important consequence of relaxing the Richard-
son criterion, allowing instabiliy to occur even when J(z) is everywhere greater
than 1/4. Unfortunately, no formal theorem similar to the Miles-Howard theo-
rem exists in this case, but this is a rather ubiquitous empirical finding of most
attempts at solving the diffusive extension of the Taylor-Goldstein equation.

Diffusive shear instabilities are relevant in the Earth’s atmosphere, and per-
haps also in stellar interiors. They are probably not important in the ocean,
however.




