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6.4 The viscous theory for shear instabilities

6.4.1 The background flow and the importance of viscos-
ity

In the previous Section, we studied inviscid shear flows. These turn out to
be somewhat peculiar in the sense that any profile ū(z) could be used for the
background shear. In reality, however, shear flows usually arise from a balance
between forcing and viscous dissipation, and there is a single background solu-
tion for a given forcing and a given set of boundary conditions. Indeed, if we
try to solve

ρm

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ρmν∇2u+ F (z)ex (6.45)

(where we have arbitrarily chosen to take the force as acting in the x−direction),
then the only steady-state solution (assuming, say, periodic boundary conditions
in x) is such that

ρmν∇2ū+ F (z)ex = 0 (6.46)

or in other words,

ū = ū(z)ex (6.47)

where ū(z) satisfies

d2ū

dz2
= −F (z)

ρmν
(6.48)

The actual solution ū(z) will then depend on what is assumed in terms of the
boundary conditions in z. For a constant force F0, for instance, with no-slip
boundaries at z = 0 and z = 1 (so ū(0) = ū(1) = 0, we find that the solution is

ū(z) = − F0

ρmν

z(z − 1)

2
(6.49)

or, in other words, a parabolic profile (called a Poiseuille flow). Other forces
and other boundary conditions will similarly yield other background flow profiles
ū(z).

Since viscosity is key in selecting the background flow, it is often not a good
idea to neglect it in the perturbation equations. For this reason, we now proceed
to analyze the stability of shear flows in the presence of viscosity.

6.4.2 Linear stability

As in the case of inviscid shear flows, we now let u = ū+ ũ, and substitute this
into the momentum equation. We get

∂ũ

∂t
+ ū · ∇ũ+ ũ · ∇ū = − 1

ρm
∇p̃+ ν∇2ũ (6.50)
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With the same steps as in the case of inviscid flows, we arrive at

(λ+ikxū(z))

(
d2ŵ

dz2
− k2

xŵ

)
−ikxŵ

d2ū

dz2
= ν

(
d2

dz2
− k2

x

)(
d2ŵ

dz2
− k2

xŵ

)
(6.51)

which can then be transformed into the Orr-Sommerfeld equation:

(ū(z)− c)Dŵ − ŵ d
2ū

dz2
= −i ν

kx
D2ŵ (6.52)

using, as before λ = −ikxc and where the operator D ≡ d2/dz2 − k2
x

By contrast with Rayleigh’s equation, the Orr-Sommerfeld equation is al-
ways regular (for ν 6= 0), since the coefficient in front of the highest derivative
is never 0. It is therefore much easier to find solutions numerically. However,
the equation itself is of higher order and very rarely has any analytical solution.
Some theorems associated with properties of solutions of the Orr-Sommerfeld
equation are discussed by Drazin & Reid in the textbook Hydrodynamic Stabil-
ity. The most important set of results concerning the stability of viscous shear
flows are summarized in Chapter 4 (where they use the notation R ∝ 1/ν for
the Reynolds number, and α = kx). We see that

• In general, viscosity has a tendency to stabilize shear flows for very large
values of ν (small values of R). For instance, the range of unstable modes
for the Bickley jet (e.g. case (d)) is null below a critical value of R, and
then gradually increases to recover the inviscid range for large R.

• This last statement is in fact true of all cases: for R → ∞, the inviscid
limit is indeed recovered (so it is not a singular limit of the equations).

• Interestingly, however, we also find that linear shear flows (which are lin-
early stable for all wavenumbers in the inviscid limit), can be unstable for
an intermediate range of values of the viscosity. This is a peculiar case
where viscosity can have a destabilizing effect on a system.

6.4.3 Energy stability for viscous linear shear flows

To finish this section on the stability of unstratified shear flows, we now look
again at the problem of energy stability, using the method discussed in the
context of convection. Let’s consider a domain of height Lz, and horizontal
size Lx, and assume for the moment that there is a linear background shear
flow ū(z) = Sez. We assume that all the perturbations to that background are
periodic in Lx and Lz. We now look at the energetics of perturbations ũ around
that state. The governing equations are :

∂ũ

∂x
+
∂w̃

∂z
= 0

∂ũ

∂t
+ ũ · ∇ũ+ Sz

∂ũ

∂x
+ Sw̃ = − 1

ρ0

∂p̃

∂x
+ ν∇2ũ

∂w̃

∂t
+ ũ · ∇w̃ + Sz

∂w̃

∂x
= − 1

ρ0

∂p̃

∂z
+ ν∇2w̃ (6.53)
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Non-dimensionalizing the distances with respect to the vertical size Lz of the
domain, and the velocity in terms of SLz, we get the non-dimensional equations

∂u

∂x
+
∂w

∂z
= 0

∂u

∂t
+ u · ∇u+ z

∂u

∂x
+ w = −∂p̃

∂x
+

1

Re
∇2u

∂w

∂t
+ u · ∇w + z

∂w

∂x
= −∂p̃

∂z
+

1

Re
∇2w (6.54)

where everything is now implicitely non-dimensional variables and where

Re =
SL2

z

ν
(6.55)

is the Reynolds number of the flow. The Reynolds number is another very
famous number in fluid dynamics that measures the ratio of the inertial terms
(u · ∇u) to the viscous terms (ν∇2u). The larger the Reynolds number is, the
less important viscosity is. In the limit of very large Reynolds number, viscosity
should be negligible.

Using the usual trick of dotting the momentum equation with u, we get the
very simple energy equation

∂E

∂t
= −〈uw〉 − 1

Re
〈|∇u|2〉 ≡ H(u) (6.56)

As in the case of convection, we then try to determine when energy stability
occurs, ie. when H(u) is negative for all possible divergence-free velocity fields.

We first maximize H(u) under the constraints that ∇ · u = 0 and the dissi-
pation functional D = D0. To do so, we create the functional

S = −〈uw〉+ Λ1〈
1

Re
|∇u|2 −D0〉+ 〈Λ2(x, z)∇ · u〉 (6.57)

with the two Lagrange multipliers Λ1 and Λ2(x, z). This defines the Lagrangian

L = −uw + Λ1(
1

Re
|∇u|2 −D0) + Λ2(x, z)∇ · u (6.58)

The Euler-Lagrange equations for this maximization process are:

−w =
∂Λ2

∂x
+ 2

Λ1

Re
∇2u

−u =
∂Λ2

∂z
+ 2

Λ1

Re
∇2w (6.59)

together with the two constraints. Eliminating Λ2 between the two equations,
we get

∂u

∂x
− ∂w

∂z
= 2

Λ1

Re
∇2

(
∂u

∂z
− ∂w

∂x

)
(6.60)
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Since we are working in 2D we can use a streamfunction such that u = ∂φ/∂z
and w = −∂φ/∂x. The equation above becomes

2
∂2φ

∂x∂z
= 2

Λ1

Re
∇4φ (6.61)

Assuming solutions of the kind φ(x, z) ∼ exp(ikxx+ ikzz), this yields

Λ1 = −Re
kxkz

(k2
x + k2

z)2
(6.62)

Let’s now go back to the original energy equation, and calculate its right-hand-
side:

∂E

∂t
= −〈uw〉 − 1

Re
〈
(
∂u

∂x

)2

+

(
∂u

∂z

)2

+

(
∂w

∂x

)2

+

(
∂w

∂z

)2

〉

= 〈∂φ
∂x

∂φ

∂z
〉 − 1

Re
〈
(
∂2φ

∂x∂z

)2

+

(
∂2φ

∂z2

)2

+

(
∂2φ

∂x2

)2

+

(
∂2φ

∂z∂x

)2

〉

= −kxkz〈|φ|2〉 −
(k2
x + k2

z)2

Re
〈|φ|2〉

= − (k2
x + k2

z)2

Re
(1− Λ1)〈|φ|2〉 (6.63)

This implies that for the system to be energy-stable (dE/dt < 0), we simply need
Λ1 < 1 where k2

x + k2
y is not allowed to be identically 0 (otherwise dE/dt = 0).

Since we can rewrite Λ1 as

Λ1 = −Re
cos θ sin θ

k2
= −Re

2

sin 2θ

k2
(6.64)

where k2 = k2
x + k2

z and cos θ = kx/k, then we see that Λ1 is maximum for
angles θ = −π/4 and θ − 3π/4, in which case sin(2θ) = −1, but continuously
decreases with increasing k2. Hence, the maximum value of Λ1 is for kx = ±kz,
and for the smallest non-zero available value of k that lies at these angles. This
implies

max Λ1 =
Re

2
max

kx=±ky

1

k2
x + k2

z

=
Re

4

1

min(k2
x, k

2
z)

= Re max(L̂2
x, 1) (6.65)

where L̂x = Lx/Lz is the horizontal length of the domain in units of Lz. To
get to the last expression we have used the fact that the minimum wavenumber
in the z direction is 2π, while the minimum wavenumber in the x direction is
2π/L̂x. So, finally, the condition Λ1 < 1 for energy stability implies a condition
on the Reynolds number :

Re < ReE =
16π2

max(L2
x/L

2
z, 1)

(6.66)
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This shows that large enough viscosity (low enough Reynolds number) can al-
ways stabilize a shear flow.

The implication of this result for a square periodic domain, for instance,
is that the maximum Reynolds number for stability1 of a linear shear flow is
ReE = 16π2 ' 158. For larger Reynolds numbers, we know that the flow is
linearly stable, but well-chosen finite amplitude instabilities can destabilize it.
The question of the optimal perturbations, i.e. for a given perturbation energy,
what is the shape of the perturbation that is unstable for the lowest possible
Reynolds number, is a subject of active research.

1This is another good way of testing the numerics of a doubly-periodic code : for any
Re < ReE the total energy of any initial perturbation should decay.




