Chapter 6

Shear instabilities

In this final Chapter, we continue our study of the stability of fluid flows by
looking at another very common source of instability, shear. By definition,
shear occurs whenever two adjacent fluid parcels move in parallel directions,
but at different velocities. The shear is defined as the amplitude of the local
velocity gradient perpendicular to the motion.

Shear flows are wubiquitous in nature and can occur on any scale. Flows
pumped though pipes by some pressure gradient along the pipe (called Poiseuille
flows) are present everywhere in natural or engineered systems: blood flow
through the body, from small capillaries to arteries, fluid flow through under-
ground river systems, magma flows and pyroclastic flows through volcano chim-
neys, water flowing through a hose, a kitchen faucet, oil in a car engine, in a
pipeline, etc.. These are often subject to strong shear if the wall boundaries are
no-slip (so fluid is moving in the center of the pipe, but not on the sides. Shear
flows can also be driven by differential pressure gradients (or any other forces)
in open systems, and are found in the ocean, in the atmospheric wind patterns,
in the surface and subsurface flows of the Sun, giant planets, other stars, in the
orbital motion of gas in accretion disks, etc..

In this Chapter, we will apply some of the techniques learned in the context
of convection to shear instabilities, and we will also see some new techniques.
We will begin by looking at unstratified shear flows, and then move on to the
more complicated problem of stratified shear flows.

6.1 Energetics of shear instabilities

The reason why shear drives instabilities is most easily understood by consider-
ing the energetics of a sheared fluid. The technique introduced here is actually
widely applicable to many fluid instabilities, but it is worth bearing in mind
that it is not very rigorous (nor is it meant to be), by contrast with all the other
techniques introduced in the previous chapter.

Energetic considerations for the development of instabilities are based on
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146 CHAPTER 6. SHEAR INSTABILITIES

the following idea: given a background fluid flow, is that background the low-
est possible energy state of the system, or can energy be extracted from the
background by mixing material around? If it can, then instabilities are indeed
energetically favorable because a perturbation can use the energy extracted from
the background to amplify itself, in a positive feedback loop. This idea is il-
lustrated below, for unstratified shear flows (see later for the case of stratified
shear flows.)

Consider a simple background fluid flow, with constant density pg, subject
to some shear. Without loss of generality, the shear can be modeled locally as

u=1u(z)e, = u(0) + Sze, (6.1)

where S is the (constant) shearing rate, by moving into a suitable frame of
reference. This expression can, for instance, be viewed as a Taylor-expansion of
the actual shear flow near a certain point.

Consider two parcels of fluid, one at z = 0, and one at z = ¢, where € is
small enough for (6.1) to be a good representation of the local flow. The initial
total kinetic energy contained in the two parcels is

B = %Oa(o)u%a(e)? - %a(o)u% (@(0) + Se)? = poa(0)2+poa<o)56+%s%2

(6.2)
Meanwhile, the momentum of the lower parcel is pp@(0) while that of the upper
parcel is poti(e) = po(u(0) + Se).

Next, suppose we switch the two parcels around, but in the process, mix
and equalize their momenta. If the total momentum remains conserved in the
process, then the momenta of each of the two switched parcels becomes po(u(0)+
Se/2), and they are both moving at the average velocity @(0) 4+ Se/2 (as shown
in Figure 6.1). The total kinetic energy of the switched parcels is then

E, = 2% (@(0) + Se/2)% = poa(0)? + 2p0@(0)Se + %3262 (6.3)
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Figure 6.1: The mixing even equalizes the momenta of the two parcels of fluid.

We see that the new background flow consisting of the switched parcels has
a lower energy than the original one. The difference

AE = E; — E, = ppS?€*/4 >0 (6.4)
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is available to amplify initial perturbations and thus drive instabilities. This is
the main reason why shear instabilities are so common — the shear itself is a
reservoir of kinetic energy that can, under some circumstances, be tapped into
to drive instabilities.

6.2 Local linear stability analysis

As for the case of convection, we now attempt to perform a local stability
analysis of shear flows. We do not need to specify the origin of the background
shear, but merely assume it exists. We assume that the flow can be locally
linearized, as in (6.1), with a constant shearing rate S. We also assume for
simplicity that we are in the limit where the Boussinesq approximation is valid.
If we let

u=u+u (6.5)
then the perturbations evolve according to the linearized equation
V-u=0
ou - _ 1 9~
—+u-Vuo+u -Vu=—-——Vp+rvVa (6.6)
ot Po

Once expanded into components (and assuming 2D flow, for instance), this
becomes

oi o0 _,
or 0z

ot onu . 10p 9

ow ow 1 0p 9

B + Sz% Y + vV (6.7)

We immediately detect a crucial problem: this equation does not have con-
stant coefficients, so the standard local analysis (which would have us use the
ansatz ¢ = §exp(ik,x + ik,z + A\t) will not work. However, for the specific case
of linear shear flows, there is a nice trick we can play which involves moving
into a sheared reference frame. Indeed, let

' =x— Szt

Z =z
t'=t (6.8)
then

9_290

dr oz
9_0 40
8z 0z ox’
0 0 0
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so the new equations are

ou  ow 0w

ow Taw Sty =0
ot . 1 Op

ow 1 0p St’@

(6.10)

ot po 02’ E ox’

In this new coordinate system, there is no spatially-dependent coefficient, so we

can indeed say that
= a(t') exp(ik,a’ + ik,2") (6.11)

and similarly for the other variables. Then we have

ikyt+ i(k, — Skt ) =0

i = Uk = Skat')p (6.12)

Note, however, that if we wrote k,(t') = k, — Sk,t’ and k, = k, then

Kzl + k() = 0

du . (2NN
@—stz—%ﬂxp
dw i
= —— k(P 6.13
G = oo (6.13)

Now these look like they have time-independent coefficients, but they really
don’t since k. depends on t'.

Substituting one equation into the other, we eventually get (remembering
that ¢/ =t

div k.(t) [ kK.(t) dw .
— =2 |22 4128 6.14
dt Ky { Ke dt + 25w ( )
which becomes the simple ODE for w:
K2(t)] dw K, (t)
1 = — =252 6.15
[ + K2 ] dt Ky v (6.15)
Since dk, /dt = —Sk,, this can also be rewritten as
d K2(t)
Z 1+ =2 )| = 1
7 [( + 2 )w} 0 (6.16)
or, in other words,
o Ck?

(6.17)

D) = T E D T R T (b - Shat)?
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where C'is an arbitrary integration constant. Ast — oo, w(t) always eventually
tends to 0, which shows that the linear shear is always stable!

This result appears to contradict our energetic argument, which suggested
that a non-viscous linear shear should be unstable. Is it really true? Or is it
another one of these cases where the local analysis is giving weird results? The
only way to find out is to abandon the local analysis and do the full problem in
a bounded domain.

6.3 Global analysis of unstratified plane parallel
flows

6.3.1 Linear stability analysis in the inviscid limit

We now consider a global model of fluid flow between two horizontal parallel
plates, located at z = 0 and z = H. The plates are impermeable, so w = 0
on each plate. For simplicity, we assume again that there is no viscosity. In
that case, we cannot apply any boundary conditions on u: the ones on w are
sufficient to fully constrain the problem.

Let’s first consider the background state. Interestingly, in the absence of
viscosity, any shear flow in the z-direction, whose profile depends only on z but
not on x or ¢t (assuming a 2D system), is a solution of the steady-state momentum
equation and of the continuity equation. In other words, the background flow
u = u(z)e, satisfies

a
V-u=0 (6.18)

as long as Vp = 0. Possible examples of such a background flow are shown in
Figure 6.2.

Using the usual trick of setting w = u + w, and similarly for p, we can easily
show that perturbations to this background flow satisfy

oi o _
dr 9z

@_’_*( )@_’_ ~@—_@

ot uz 0 wdz T Oz

ow ~_, 0w  0p

B + u(z)% =-3 (6.19)

The coefficients of this system of PDEs are independent of time and of x, so we
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Figure 6.2: Illustration of possible background shear flows in a non-viscous

system.

seek solutions of the form ¢(z, z,t) = §(2) exp(ikzx + At). We get

dw

kU + — =0
{2 u+dz
da
it + ik @i(2) it + e = —iky
i+ u(z)u+wdz ik.p
dp
M + ik, t(z)w = ——
W+ ik, u(2)w o

Eliminating p, we get

dz

A~ A — 27
O+ ikaa(z) 2 4 (m + ‘;’) 9 o T ik Ot ikaa(2)

We then use the continuity equation to eliminate u, to get

o d?w N\ ., d*u
AN+ ikya(z)) <dz2 — kiw) - zkmw@ =0
Finally, if we define a new variable ¢ such that
A= —ikgc

then the vertical velocity perturbation must satisfy

_ d*w 9 . d*u
(u(z) —¢) <dz2 - kmw> o = 0

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)
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where c is the eigenvalue of the problem.

This equation is called the Rayleigh stability equation. It is an ODE which
needs to be solved for the function w(z) and the eigenvalue ¢, subject to the
boundary conditions w = 0 at the top and bottom of the domain. It usually
needs to be solved numerically, and is not a standard Sturm-Liouville eigenvalue
problem, so that most of the theorems we have learned about the latter do not
apply here. Nevertheless, there are still an interesting number of strict results
that can be derived from (6.24).

First, note that for any solution with k, > 0, there is another solution with
k., < 0 (everything else being the same). Without loss of generality, we can
therefore start by taking k, > 0. Next, note that unstable modes for k, > 0 are
characterized by c values that have a positive imaginary part. Also it’s easy to
show that since w can be complex, if w is a solution then its complex conjugate
w* is also a solution with eigenvalue ¢*. To see this, simply take the complex
conjugate of the entire equation (6.24).

This means that there are only two possibilities: either the solution w has ¢
real (the mode is called neutrally stable since it neither grows nor decays, but
merely oscillates), or there is a complex-conjugate pair of solutions @ and w*
with one of the two being an unstable mode. If ¢ is real, then there is a possibility
that the quantity (@(z) — ¢) could be zero somewhere in the domain. If this is
the case, then the ODE is singular at this point. We shall return to that case
later. For growing modes, however, ¢ has a non-zero imaginary part, and the
problem is regular everywhere.

Based on this consideration, we can then derive one of the most important
results on plane parallel shear flows: Rayleigh’s inflection point theorem. This
theorem states that a necessary condition for the existence of a linearly unstable
mode is that the flow profile must have an inflection point in the domain, that
is, some point where 4" (z) = d?u/dz? = 0. To show this, first assume that c
has a non-zero imaginary part, and rewrite (6.24) as

B oy

7 k2 — b =0 (6.25)

u(z) — ¢

Then multiply this equation by w*, and integrate the result over z, from the
bottom boundary (at z = 0) to the top boundary (at z = H). This yields

H 2 A 1
d
/ Wt S — k2| — LGOI P (6.26)
o dz a(z) —c
The first term in the integral can then be integrated by parts, to give
H ~ 12 —11
dw " (2)
— E2|w)? pP—" | dz=0 6.27
/ [dz 2l + o o7 | d (6:27)

The imaginary part of this equation is then

5!

X(e " @12 u"(z) =
3( )/O i o = =0 (6.28)
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Since all of the terms within the integral are strictly positive except @”(z),
there are two possibilities: either @”(z) changes sign somewhere in the domain,
or §(c) = 0 (which we had assumed is not the case). This shows that S(c) #
0 requires the presence of an inflection point! Note that the presence of an
inflection point, by this analysis, is only a necessary condition for instability,
but not a sufficient one, which means that there could be flows with an inflection
point that are still stable. However, it does imply that flows without inflection
point are always stable (in this inviscid limit).

Rayleigh’s inflection point theorem has a really important, and rather pe-
culiar consequence: it implies that linear shear flows (that is, flows of the kind
described by (6.1)) are linearly stable to shear instabilities! This result is quite
remarkable, and proves that the local analysis was right, in its stark contrast
with our energetic argument, which suggested that linear shear flows in the in-
viscid limit should always be unstable. As it turns out, shear flows are quite
different from the previously studied case of convection in that they are subject
to finite amplitude instabilities, that is, they are often linearly stable, but can be
destabilized by a strong enough perturbation. More on this later. In contrast,
if the flow has an inflection point, then this is usually the position around which
the shear instability will develop, and where the amplitude of the perturbation
is the largest.

A number of additional interesting theorems can be derived from Rayleigh’s
instability equation. These include:

e Fjortoft’s theorem: This is a stronger form of Rayleigh’s inflection point
criterion, which states that a necessary condition for instability is that
w”(z)(@ — 4;) < 0 somewhere in the fluid, where 4; = 4(z;) and where

z; is the point at which @”(z;) = 0. A more physical interpretation of

Fjortoft’s theorem is simply that the inflection point must correspond to

a maximum in the shearing rate S(z) = |du/dz| rather than a minimum.

So for example (a) in Figure 6.2 could be linearly unstable, but (b) is not.

e Howard’s semicircle theorem: This is a very useful theorem that bounds
the possible values of the real and imaginary parts of ¢, and therefore places
upper limits on the growth rate of the unstable modes. The theorem states
that all unstable modes (that is with &(c¢) > 0) have an eigenvalue ¢ that
satisfies

max & + min@ > (max @ — min @)?
(?R(c) — 2) +S(e)? < 5 (6.29)

or in other words, the complex number c¢ lies on the complex plane within
the semi-circle of radius R = (max@ — min)/4, centered on the point
(max @ + min)/2 on the real axis.

The proof of these theorems can be found in the textbook Hydrodynamic Sta-
bility by Drazin and Reid, for instance, or in the original papers.
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Finally, the combination of these theorems leads to the following strong state-
ments (whose proofs are beyond the scope of this class). If 4(z) is a smooth
flow, then eigenmodes of Rayleigh’s instability equation are of two kinds:

o Neutrally stable modes, with $(c) = 0. There is a continuum of them, one
for each possible (real) value of ¢ in the interval [min 4, max @]. The modes
are not defined at the point z where @(z) = ¢, and their first derivative
is discontinuous there. The position of this singularity is called a critical
layer. Viscosity or nonlinearities can regularize the critical layer, but even
with viscosity, many interesting phenomena can happen at a critical layer.

e Pairs of complex-conjugate modes, with &(c) # 0. There are only very
few of them, at most one pair for each inflection point in the flow, and ¢
for these complex-conjugate pairs satisfies Howard’s semicircle theorem.

6.3.2 Examples of commonly-studied shear flows
Linear shear flows

As seen in the previous section, linear shear flows of the kind u = ze, are not
expected to have any growing modes. Let’s see this more directly by solving
Rayleigh’s instability equation subject to the boundary conditions w = 0 at
z = —1 and z = 1. Note how the velocity amplitude and domain height are now
both non-dimensional. The equation simply becomes:

(z—c) (d22 — k§w> =0 (6.30)

There are several possibilities:
e If ¢ is real, and not in the interval [—1, 1], then this can be rewritten as

d*w 9 .
which has exponential solutions. However, these cannot be fitted to the
homogeneous boundary conditions so this case is ruled out entirely.

e If ¢ is complex, that is, ¢ = c¢g + ic; where ¢; # 0, then (6.30) has a real
and imaginary part, which are respectively:

i d?
(z —cR) ( vr —kg’lf}R> +cr ( wr —kiﬁ}[> =0

dz? dz?
d*w N d* N
(z — cRr) ( szI - kfcun) —cr (szR - kiw;:g) =0 (6.32)

where @ = Wg + iwy. These can be combined to get (for instance)

2 2 deR 2~
[(z = cr)* + cj] Tz~ keir | =0 (6.33)
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and similarly for w;. Since ¢; was by assumption non-zero, we end up
again with equation (6.31) whose exponential solutions cannot be fitted
to the boundary conditions. This has a very important implication: re-
membering that A = —ik,c, we can only get growing solutions if c¢; is
non-zero — but we just ruled this possibility out. Hence, as expected, we
find that there are no linearly unstable modes in linear shear flows.

e Finally, if ¢ is real and lies within the interval [—1, 1], then for any selected
value of ¢, (6.30) is singular at the point 4(zs) = zs = ¢, and the derivative
must be discontinuous at z,. Solutions can be found by solving (6.30) on
both sides of z,, and matching them to one another at that point requiring
continuity of .

Solving (6.30) for z > z,, and applying & =0 at z = 1, we get

W = wy sinh(k;(z — 1)) (6.34)
Similarly for z < zg:
W = w_sinh(k,(z + 1)) (6.35)
Matching the two at z = ¢, we have
wy sinh(k;(c — 1)) = w_ sinh(k, (¢ + 1)) (6.36)
This can be rewritten as
wy = sinh(k:}ﬁ and w_ = sirﬂl(kfﬁ (6.37)

where wyq is the total mode amplitude, which remains arbitrary since this
is a linear problem. So finally, for every value of ¢ in the interval [—1, 1],
we get one eigenmode w(z) as:
Wo .

= —————sinh(ky (2 — 1)) fi <z<1

Sh(e(c = 1)) sinh(k;(z — 1)) for c < z <
N Wo .

= ——————sinh(k, 1)) for —1<2< 6.38
w sinh(km(c—i—l))bm (kz(z + 1)) for <z<e (6.38)

s

A particular mode for k, = 1, for ¢ = —0.2 is shown in Figure 6.3. Note
how w is continuous but its derivative isn’t. This implies, by the conti-
nuity equation, that the horizontal flow velocity w is discontinuous. Of
course, this can only happen in the non-viscous case (viscosity would oth-
erwise tend to smooth-out the discontinuity, thereby disallowing this kind
of solution). See more in the next section on the effect of viscosity on
linear shear flows.

To summarize these results, we have seen that, as discussed in the previous
section, a linear shear is linearly stable, but there is a continuum of neutral
modes where the real part of ¢ lies in between the minimum and the maximum
of 4(z). With A = —ik,c, the full solution for the vertical velocity is

w(z, z,1) = R (w(z)eikz@*d)) (6.39)
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Figure 6.3: Vertical velocity profile for the neutral mode with k, = 1, for
c=—-0.2

where w is given in equation (6.38). The neutral modes thus discovered are a
form of oscillation propagating in the x-direction at velocity ¢ without change
of form.

The Bickley jet

There are not many continuous profiles @(z) for which analytical solutions of
Rayleigh instability equation exist. In general, solutions and their corresponding
eigenvalues have to be computed numerically. In the following example, which
studies the Bickley jet, some of the solutions can be found analytically, and
some must be found numerically.

The Bickley jet is of the form

i(z) = sech®(2)e, = (:05132(2)605 (6.40)

and is shown in Figure 6.4. The first and second derivatives are

@ (z) = —2tanh(2)u(z)
@"(z) = —2tanh(2)@' (z) — 2sech®(2)a(z) = 2(2 — 3a(2))a(z) (6.41)

This has an inflection point at positions z; such that @(z;) = 2/3 (which happens
at two positions, one below 0 and one above 0). We therefore expect, for each
value of k,, at most 2 pairs of complex-conjugate modes. As it turns out,
because of the symmetries of the jet, there are indeed 2 modes: one for which
w is symmetric with respect to z (called the sinuous mode), and one for which
W is antisymmetric with respect to z (called the varicose mode).
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Figure 6.4: Bickley jet

To find growing modes, one needs to solve Rayleigh’s instability equation
numerically. As before, we first isolate the real and imaginary parts of this
equation, to get:

2,7 2 A
(ﬂ(z) — CR) (ddZ;R — k’iﬁ]}z) +cr (dd:]; — k‘iﬁ]}) — ’Lf]Rﬂ//(Z) =0

2,7 2 A
(@(z) - cr) (dd:;f - k§w1> — e (d dz"f - kgwR> — " (2) = (6.42)

We then reshuffle them as

d* u(z) — bR — ¢t
e = e LB
z (a(z) —cr)? +c7
dz’llA}[ 2 A crWr + (4 Z) — CR)UA)[ _
7 Kz — (@) — et & a'(z)=0 (6.43)

We then solve these equations numerically, using for instance a Newton-Raphson
two-point boundary value relaxation method. To find the sinuous and varicose
modes, we limit the domain to z > 0 and require that dw/dz = 0 at z = 0 for
the sinuous mode, and w = 0 at z = 0 for the varicose mode. The figure below
shows cy as a function of k, for the sinuous mode. We see that growing modes
only exist for small enough k, (that is, k, < 2), and that there is a most rapidly
growing mode whose wavenumber is approximately k, = 0.1. For the varicose
mode, the maximum wavenumber that is unstable is k£, = 1, and the growth
rate of the varicose modes are always smaller than those of the sinuous modes
(see Figure 6.5).

Interestingly, the marginal modes (that is, the modes for which ¢; is identi-
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Figure 6.5: Imaginary part of ¢ (which is proportional to the growth rate \) for
the sinuous and varicose modes.

cally zero) can be found analytically. It’s easy to check that they have

ky =2, cr ==, =sech?(z) for the sinuous mode

Wl N Wl

ky =1, cr= -, =sech(z)tanh(z) for the varicose mode (6.44)
The fact that cg is equal to value of @(z) at the inflection point, for these
marginal modes, is not a coincidence. It it the only real value of c¢g for which a
non-singular solution to Rayleigh’s equation can exist.

Finally, note that in addition to the regular marginal and growing modes,
there is also a continuum of singular modes whose eigenvalue c is real, and
lies between 0 and 1. These can be found, as before, by seeking solutions on
either sides of the singular point, and matching them to one another, and to the
boundary conditions at infinity.





