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5.5 Truncated equations and the Lorentz sys-
tem

As a in alternative path into nonlinear theory, we now explore the idea of using
truncated systems as a tool to study the time-dependent dynamics of convection
close to onset. Indeed, as we saw previously, only very few modes are excited
near onset. It may then be possible to model the system dynamics by considering
the nonlinear interaction between these few modes only. This procedure will also
verify our assumption of the previous section that the steady states found are
meaningful representations of the near-onset dynamics.

5.5.1 Derivation of the Lorenz equation

Our previous calculation of the weakly nonlinear steady-state just above onset
suggests that the modes that matter for small Ra are:

φ(x, z, t) = A(t) sin(πz) cos(kcx)

T (x, z, t) = B(t) sin(πz) sin(kcx)− C(t) sin(2πz) (5.119)

Plugging these expressions into (6.36), we get

ω = ∇2φ = −(π2 + k2
c )φ (5.120)

and so the momentum equation becomes (recalling that the nonlinear term in
the momentum equation is zero)

−(π2 + k2
c )Ȧ sin(πz) cos(kcx) = −RaPrBkc sin(πz) cos(kcx)

+ Pr(π2 + k2
c )2A sin(πz) cos(kcx)(5.121)

which simplifies directly to

Ȧ = RaPr
kc

π2 + k2
c

B − Pr(π2 + k2
c )A (5.122)

The temperature equation on the other hand becomes

Ḃ sin(πz) sin(kcx)− Ċ sin(2πz) + kcπB sin(πz) cos(kcx)A cos(πz) cos(kcx)

+ [πB cos(πz) sin(kcx)− 2πC cos(2πz)] kcA sin(πz) sin(kcx)

−kcA sin(πz) sin(kcx)

= −(π2 + k2
c )B sin(πz) sin(kcx) + 4π2C sin(2πz) (5.123)

Simplifying this, we get:

Ḃ sin(πz) sin(kcx)− Ċ sin(2πz) +
1

2
kcπAB sin(2πz)

−πkcAC sin(kcx) (sin(3πz)− sin(πz))− kcA sin(πz) sin(kcx)

= −(π2 + k2
c )B sin(πz) sin(kcx) + 4π2C sin(2πz) (5.124)
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We see that there are 3 types of terms: terms in sin(πz), in sin(2πz) and in
sin(3πz). Projecting this equation onto sin(πz) and sin(2πz) respectively (i.e.
integrating this equation times sin(πz) or sin(2πz) from z = 0 to z = 1), and
ignoring the term in sin(3πz), we then get

Ȧ = RaPr
kc

π2 + k2
c

B − Pr(π2 + k2
c )A

Ḃ = kcA− kcπAC − (π2 + k2
c )B

Ċ =
1

2
kcπAB − 4π2C (5.125)

With a little bit of work, it is then possible to rescale these equations into

a′ = Pr(−a+ b)

b′ = ra− b− ac
c′ = −sc+ ab (5.126)

where r = Ra/Rac, a is proportional to A, b is proportional to rB, c is propor-
tional to rC, and time has been rescaled as well (so the derivative with respect to
the new time is denoted by a prime instead of a dot). s is merely a constant that
depends on the temporal non-dimensionalization. It is traditionally taken to be
8/3. The new set of equation is very famous: they form the Lorenz equations.
Note how a represents the amplitude of the convective rolls, b represents the
amplitude of the corresponding temperature perturbation, and c corresponds to
the change in the horizontally-averaged temperature profile.

It is important to realize that, by contrast with the weakly nonlinear asymptotic
expansion of the previous section, there is no strict or formal justification for
throwing away the sin(3z) term. We just do it for convenience, in order to close
the system of equations. As such, the risk with this approach is that one is
never absolutely sure that the terms thrown away do not affect the dynamics
of the system at leading order. Truncated systems such as the one derived here
should therefore only be seen as toy models. They can be very useful, but have
serious limitations as well.

5.5.2 Properties of the Lorenz equations

The Lorenz equations have been studied in depth, and their discovery started
the field of chaotic dynamics. Let’s briefly look into their properties. First, note
that they have an obvious fixed point at a = b = c = 0 (which corresponds to
the state of no convection), which can easily be shown to be stable for r < 1 and
unstable for r > 1. This shows that r = 1 marks an important bifurcation in
the system. We know this bifurcation, of course – it is the one that corresponds
to Ra = Rac.

What happens for r > 1? Are there other fixed points? If they do, then the
latter must satisfy a = b, and c = ab/s = a2/s, and so

ra− a− a3/s = 0 (5.127)
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Figure 5.8: Evolution of the Lorenz system for r = 0.1, r = 10, r = 15 and
r = 28. The first case is subcritical, and the fixed point at the origin is globally
stable. The second and third cases, the fixed point at the origin is unstable, but
two new fixed points emerge. In the final case all the fixed points are unstable,
and the system evolves on a chaotic attractor.

Aside from the a = 0 steady-state which we already know of, we see there are
two other solutions with a = ±s(r − 1). These solutions only exist when r ≥ 1,
and can be shown to be stable for r between 1 and another bifurcation point
(see below). These describe two new stable convective states, which correspond
to finite amplitude steady convective rolls. This justifies the approach selected
in the previous lecture.

Further investigation shows that (at least in the Lorenz system), these new
fixed points also become unstable at the critical value

r =
Pr(Pr + s+ 3)

Pr− s− 1
(5.128)

Beyond that point, the solutions become chaotic and converge to a strange at-
tractor. This means that they are strictly not periodic, and strictly not pre-
dictable beyond a certain timescale, but nevertheless have somewhat recogniz-
able patterns. These various dynamical behaviors are illustrated in Figure 5.8,
for Pr = 10 and s = 8/3. The bifurcation parameter r is varied from 0.1 to 28.




