
Chapter 5

Instabilities I: Convection

In the following chapters, we will study a few of the fundamental instabilities of
fluid dynamics, and learn a number of tools to study their properties. The key
questions we will try to answer, each time, are:

• Is the background state considered linearly stable or not? How does this
depend on the system parameters?

• Are there finite amplitude instabilities?

• What saturates the instability? What are the properties of the saturated
state?

In the vast majority of cases, only the first of these questions can be answered
analytically, and even so, not always. However, there are also some interesting
instabilities for which all three questions can be answered analytically or semi-
analytically, at least approximately.

In this first chapter, we study one of the most famous fluid instabilities,
namely convection. Convection is very easily observable in a number of circum-
stances, including in the kitchen (miso soup, oil starting to warm up, ...), or in
the sky (cumulus clouds). It usually occurs when a fluid is heated from below
(e.g. the oil), or cooled from the surface (e.g. the miso soup). In this sense, it
is clear that convection is an instability that depends crucially on buoyancy.

In what follows, we will study its linear and nonlinear stability, and learn
about the properties of turbulent convection.
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2 CHAPTER 5. INSTABILITIES I: CONVECTION

5.1 Local linear stability analysis of unstably strat-
ified fluids

5.1.1 Introduction to linear instability

In Chapter 4, we studied the propagation of internal gravity waves in stably
stratified fluids. We began with the governing Boussinesq equations, namely

∇ · u = 0

ρm

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ρg

∂T

∂t
+ u · ∇T + wΘ0z = 0

ρ

ρm
= −αT (5.1)

and assumed that the fluid was stably stratified, so that Θ0z > 0. After lin-
earizing the system, assuming 2D perturbations, and creating a streamfunction
(with u = ∇× (φey)), we ended up with the following equation describing the
evolution of the flow

∂2

∂t2
(∇2φ) = −N2 ∂

2φ

∂x2
(5.2)

if N2 = αgΘ0z is assumed to be constant. As long as this is true, and ignoring
the effects of boundary conditions (hence the name local analysis) we can then
assume that φ takes the form

φ(x, z, t) = φ̂(t)eikxx+ikzz (5.3)

which leads to
d2φ̂

dt2
= −N

2k2
x

k2
φ̂ (5.4)

As long as N2 > 0, this equation clearly has oscillatory solutions which have a
frequency ω = Nkx/k. These are the gravity waves we studied in Chapter 4.

But what if N2 < 0? While this idea may seems strange at first (why
should a square be negative), note that there is no reason why N2 should be
positive. It really is the quantity αgΘ0z, and was merely defined to be a square
for convenience in the case of internal waves – but there is no reason why Θ0z or
α couldn’t actually be negative. The first case case could simply correspond to a
liquid heated from below, or to a gas for which dT0/dz < dT ad/dz. The second
actually occurs in water below 4◦ – water close to freezing has very peculiar
properties and actually gets less dense as the temperature decreases towards 0◦.

In all these scenarios, we see that φ̂(t) could then be an exponential func-
tion, instead of an oscillatory function. To be precise, depending on the initial
conditions there will be solutions for which φ̂(t) increases exponentially with
time. This kind of background is then called unstable to perturbations. Seeking
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solutions of the kind φ̂(t) = φ̂0 exp(λt), we get

λ2 = −αgΘ0z
k2
x

k2
x + k2

z

(5.5)

so

λ = ±
√
−N2

kx
k

(5.6)

The (positive) value of λ thus derived is called the growth rate of the instability.
We immediately see that for every positive solution for λ, there is also a negative
one. But we are of course much more interested in the positive λ case, since its
existence tells us that there are perturbations that can grow.

5.1.2 A physical explanation for the instability

The basic local convective instability is very easy to understand, and is illus-
trated in Figure 5.1. If a parcel of fluid from the lower, hotter regions, is moved
up a little bit, it finds itself in a cooler environment, and is therefore less dense
than its surroundings. The buoyancy force pushes it upwards, and the process
repeats in a positive feedback loop. The parcel continues to move upwards and
accelerates.

Buoyancy(Force(

Figure 5.1: A schematic view of local convection

5.1.3 The fastest growing modes

The relationship between the growth rate λ and mode structure (given by k)
obtained above is sometimes also called a dispersion relation even in the context
of instabilities, simply by analogy with the equivalent relationship for waves. It
give us a lot of information about what to expect from the early development
of a fluid instability.

Indeed, one can always expect that a fluid system is full of very low amplitude
noise. Hence, the initial conditions for an instability always contain all sorts of
possible modes that either grow or decay. In the case of convection, we see
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that there is no restriction on the values of k for which the mode could grow –
for any initial k, there is a corresponding positive value of λ. This is actually
fairly unphysical, as we shall see shortly. Nevertheless – in this simple model, all
modes grow as long as N2 < 0. However, they do not all grow equally – there are
modes that grow more rapidly than others. These are called the fastest-growing
modes.

Fastest-growing modes are of interest because, although the initial noise
may contain a spectrum of modes, all with roughly the same amplitude, the
exponential amplification will be much larger for rapidly-growing modes than
for slowly growing ones. Hence, after some time, the system will be dominated
by a few modes only, those with the largest growth rate.

In this local convection model, we see that the growth rate λ does not depend
on the mode wavenumber, but rather, on the orientation of k. This result is
somewhat artificial – had we taken diffusion and viscosity into account, we would
have found that the growth rate was lower for small-scale modes than for large-
scale modes (see Homework). Nevertheless, let’s proceed with λ as derived. It’s
easy to show that, in this case, λ is maximum for kz = 0, and takes the value

λfgm =
√
−N2 (5.7)

The fastest-growing convective modes appear to have no structure in the vertical
direction! It therefore looks quite different from our simplistic parcel argument.
In reality the entire fluid column has the same temperature, and the same
velocity. Furthermore, because ∇ · u = 0, if ∂w/∂z = 0, then ∂u/∂x = 0.
Unless kx = 0 this then implies that u = 0 – in other words, fluid is only allowed
to move up and down, not laterally. Because of this peculiar structure, these
linearly unstable fastest-growing local modes of convection are commonly-called
elevator modes.

Already, we should see that there is something rather fishy about them. We
began by assuming that we were looking at a local instability (ie. an instability
that we can model by ignoring the boundary conditions), but the modes them-
selves are vertically invariant – which is going to be inconsistent as soon as we
try to apply boundary conditions in the z direction. More on this later.

5.1.4 Nonlinear saturation

Of course, in reality we do not expect the perturbations to grow exponentially
forever – this would violate a few important laws of Physics. The reason we were
able to get exponential solutions here lies in the fact that we have linearized the
original governing equations. As the perturbations grow, they will gradually
become large enough for the neglected nonlinear terms to become significant, at
which point the linearized equations will no longer be valid, and the exponential
growth should stop.
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A simple example of nonlinear saturation

To see how this may work, let’s study a very simply 1D ODE. Consider the
equation

df

dt
= af − bf2 (5.8)

If we linearize this ODE (for small enough f) we find that it can be approximated
by df/dt = af , which has a growing exponential solution provided a > 0. Let’s
assume that’s the case.

Even if the initial value of f is very small, say, f(0) = ε, after a while,
f(t) = εeat will become quite large. Large enough, in fact, for the neglected
nonlinear terms to become important. This happens when

af ' bf2 → εeat ' a/b→ t ' (1/a) ln(a/εb) (5.9)

At that point, f stops growing exponentially, and the instability saturates.
In this particular example, saturation can be calculated analytically. Indeed,

this equation has the solution

df

af − bf2
= dt→ f(t) =

εeat

bεeat/a+ 1
(5.10)

We see that for small t, f(t) ' εeat as expected, but for large t,

f(t)→ a

b
(5.11)

In other words, f(t) stops growing exponentially and instead converges to an-
other fixed point, non-zero this time, that arise directly from the balance be-
tween the linear terms (which drive the instability) and the nonlinear terms
(which act to damp it, in this example). The function f(t), for a = b = 1 and
ε = 0.01 is shown in Figure 5.2
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Figure 5.2: The solution of f ′ = f − f2 with f(0) = 0.01. At early times, the
function f(t) grows exponentially as f(t) ' 0.01et, but at late times the growth
saturates to f(t) = 1.
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Nonlinear saturation of the elevator modes?

Let’s see if, in our example, the neglected nonlinear terms could be responsible
for the saturation of the instability. To do this, we need to go back to our
original set of equations, and determine when quantities such as u · ∇u and
u · ∇T become comparable to other such as wΘ0z for instance. A good way of
doing this is to plug in the linear solutions for T and u into these expressions.

If φ = φ0e
ikxx+λt (recalling that elevator modes have kz = 0) then

u = 0 and w = −∂φ
∂x

= −ikxφ0e
ikxx+λt (5.12)

Hence

u · ∇u = w
∂

∂z
(−ikxφ0e

ikxx+λtez) = 0 (5.13)

so the nonlinear term in the momentum equation is identically zero for the
elevator mode! To estimate u ·∇T , we apply a similar method. Since u = wez,
then u · ∇T = w∂T/∂z, but the elevator modes are invariant in z, so this term
is 0 too!

This suggests that the nonlinear terms in this system are identically zero for
the elevator modes, and the latter can therefore never saturate on their own!
Another way of putting it is to note that elevator modes are exact nonlinear
solutions of the governing equations (and not just of the linear equations). This,
combined with the fact that they can’t easily be fitted to boundary conditions,
makes them very fishy indeed.

As it turns out, while being nice and simple to study, our model this time
was oversimplified. By removing all effects of the boundary conditions, we ended
up neglecting important physics, and the results became unphysical. This is not
always the case – some instabilities can be studied using local analysis, and yield
meaningful results, but convection isn’t one of them; that’s because the basic
convective perturbation has a tendency to spread out, and would span the entire
space if it could. As a result, it has to know about the boundary conditions
applied to the system.

Having established this, we now go back a few steps and put back some of the
important neglected physics (such as boundary conditions and diffusion) into
the problem. This actually recovers the original description of the convective
instability, first studied by Rayleigh.

5.2 Rayleigh-Bénard convection

This section is adapted from the textbook Introduction to Hydrodynamic Stability
by Drazin.

5.2.1 Model setup

We now consider the more physically-realistic problem of convection in a liquid
between two horizontal plane parallel plates, separated by a distance H. The
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bottom plate is held at a larger temperature than the top one, hence driving
convection (assuming α > 0). Both plates are impermeable. Horizontally, we
could assume a number of boundary conditions, but for simplicity, we assume
the horizontal domain is infinite so that the horizontal mode structure is of the
kind exp(ikxx).

The complete set of equations governing fluid motion and temperature fluc-
tuations about the mean Tm, in this system, are the Boussinesq equations for
liquids,

∇ · u = 0

ρm

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ρg + ρmν∇2u

∂T

∂t
+ u · ∇T = κT∇2T

ρ

ρm
= −αT (5.14)

where this time we keep the viscous and thermal diffusion terms. The boundary
conditions in the vertical direction (so far) are w = 0 on both plates, T =
Tm + ∆T/2 on the lower plate (at z = 0), and T = Tm−∆T/2 on the top plate
(at z = H). A schematic of the model is shown in Figure 5.3.

Tb = Tm +
ΔT
2

Tt = Tm −
ΔT
2

z = 0

z = H

Figure 5.3: Schematic model of Rayleigh-Benard convection.

The background steady state around which we will be perturbing is one in
which there is no fluid motion, hence ū = 0. In that case, temperature is forced
to diffuse from one boundary to the next, satisfying

κT
d2T̄

dz2
= 0 (5.15)

The solution to this equation is a linear temperature profile. To satisfy the
boundary conditions, we must have T̄ (z) = −∆Tz/H + Tm + ∆T/2. Plug-
ging this solution into the equation of state, we see that it corresponds to a
background density profile

ρ̄(z) = αρm (∆Tz/H − Tm −∆T/2) (5.16)
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If ∆T and α are both positive (which we assume here), we see that ρ̄ increases
with height – in other words, fluid near the top plate is heavier than fluid near
the bottom plate. As we shall see, this is crucial for the instability to develop.
Finally, note that a background density gradient implies that there must also
be a background pressure gradient, satisfying hydrostatic equilibrium:

dp̄

dz
= −ρ̄g (5.17)

We do not actually have to solve for p̄, but merely acknowledge that it exists,
and remember that this equation is satisfied.

5.2.2 Linear perturbations

We now perturb this background, assuming u = ũ and T = T̃ + T̄ . The
boundary conditions on the perturbations are the original ones minus those
already satisfied by the background state, hence ũ = w̃ = 0 on both plates, and
T̃ = 0 on both plates. After the usual work, the linearized equations become

∇ · ũ = 0
∂ũ

∂t
= −∇p̃+ αT̃gez + ν∇2ũ

∂T̃

∂t
+ w

dT̄

dz
= κT∇2T̃ (5.18)

As before, we assume the flow is 2D, and use a streamfunction to describe
ũ. Since the background is invariant in time, we now directly assume that all
dependent variables are also proportional to exp(λt), hence we have

ũ =
dφ̂

dz
eikxx+λt , w̃ = −ikxφ̂eikxx+λt and q̃ = q̂eikxx+λt (5.19)

where q is any of the three thermodynamic variables. Plugging this into the
governing linearized equations, we have

λ
dφ̂

dz
= − ikx

ρm
p̂+ ν

d

dz

(
d2φ̂

dz2
− k2

xφ̂

)

−ikxλφ̂ = − 1

ρm

dp̂

dz
+ αgT̂ − ikxν

(
d2φ̂

dz2
− k2

xφ̂

)

λT̂ − ikxφ̂Θ0z = κT

(
d2T̂

dz2
− k2

xT̂

)
(5.20)

Eliminating p̂ between these two equations yields

λDφ̂ = −iαgT̂ kx + νD2φ̂

−ikxφ̂Θ0z = κTDT̂ − λT̂ (5.21)
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where we have defined the operator D = d2/dz2−k2
x. Finally, we can eliminate,

say, T̂ , to get
(λ− κTD)(λ− νD)Dφ̂ = N2k2

xφ̂ (5.22)

where we have used the standard substitution N2 = αgdT̄ /dz = −αg∆T/H.
With the assumptions made here, N2 is negative

We therefore see that, in order to find the growth rates of the convective
modes of instability (each of which is characterized by its horizontal wavenumber
kx), we have to solve a 6th order ODE in z, for the eigenvalue λ. Solving a 6th-
order ODE requires 6 boundary conditions – however, here we only have 4 so
far (two on T̃ and two on w̃), neither of which are expressed in terms of φ̂ yet!
So we have a bit more work to do before we can solve for λ.

First note that w̃ = 0 is equivalent to −ikxφ̂ = 0. For any kx 6= 0, this
requires φ̂ = 0. Plugging T̂ = 0 and φ̂ = 0 in the thermal energy equation shows
that these conditions imply that D2φ̂ = 0, which is itself equivalent to requiring
that d2φ̂/dz2 = 0 at the plates. For the final two boundary conditions, we have
two options. These conditions will have to be applied to the horizontal velocity
near the plate, and can either be no slip (meaning that the fluid velocity very
near the plate must be equal to the velocity of the plate – here, this implies
ũ = 0 at the plate), or stress-free (meaning that there is no viscous stress
communicated from the plate to the fluid – here, this implies that dũ/dz = 0 at
the plate).

No-slip boundary conditions are usually the more physically realistic ones
(unless modeling the interface between two fluids, which we are not doing here).
However, in this particular case, we will use stress-free boundary conditions
because they yield very simple analytical solutions to the problem (while no-
slip ones require somewhat more elaborate calculations). Indeed, the advantage
of the stress-free condition dũ/dz = 0 is that they end up being equivalent to

the temperature boundary condition d2φ̂/dz2 = 0, since ũ ∝ dφ̂/dz. While this
choice affects the quantitative results we are about to obtain, it does not affect
them qualitatively (cf Homework).

It’s reasonably easy to see that, with these boundary conditions, the vertical
eigenmodes are simply

φ̂n(z) = sin
(nπz
H

)
(5.23)

and that λn (the growth rate of the n-th mode) is the solution of

(λn + κT k
2)(λn + νk2)k2 = −N2k2

x

→ λ2
n + λnk

2(ν + κT ) + νκT k
4 +N2 k

2
x

k2
= 0 (5.24)

where

k2 = k2
x +

n2π2

H2
(5.25)

This equation is a quadratic for λn, which has the solutions

λn = −1

2
k2(ν + κT )±

√
1

4
k4(ν − κT )2 −N2

k2
x

k2
(5.26)
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This expression reveals a number of important results about the convective
modes. First, since we have assumed that N2 < 0, λn is always real. This
means that the modes will either grow or decay exponentially. Secondly, while
decaying modes always exist, growing modes do not. Additional conditions must
be satisfied for instability to take place.

5.2.3 Onset of convective instability (linear regime)

A necessary condition for a positive λn to exist is:

1

4
k4(ν + κT )2 <

1

4
k4(ν − κT )2 −N2 k

2
x

k2
(5.27)

which can be re-written as

αg
∆T

H
= −N2 >

(k2
x + n2π2/H2)3

k2
x

νκT (5.28)

This expression implies that, for fixed kx, a larger ∆T is needed to destabilize
a mode with large n than one with small n. In fact, the first mode to be
destabilized is the fundamental, which has n = 1. Furthermore, if we fix n = 1,
then we see that the minimum value of ∆T needed to destabilize the system is
given by

αg∆Tmin

H

νκT
=

(k2
x + π2/H2)3

k2
x

(5.29)

To see things a bit more clearly, let’s re-define the normalized horizontal wavenum-
ber as a = Hkx. Then

αg∆TminH
3

νκT
=

(a2 + π2)3

a2
(5.30)

The quantity on the right-hand-side is non-dimensional, which implies that the
one on the left must also be non-dimensional. As it turns out,

Ra =
αg∆TH3

νκT
(5.31)

is one of the most important non-dimensional numbers in fluid dynamics: the
Rayleigh number (named after Lord Rayleigh, who first discussed it). We see
that it only depends on input system parameters, not on the properties of the
emerging instabilities. However, because it controls whether the system is stable
or not (see below), it is one of the control parameters or bifurcation parameters
for the system.

Coming back to the question of the necessary condition for instability, note
that for a mode with nondimensional wavenumber a to be unstable, we need to
have

Ra > Ramin(a) =
(a2 + π2)3

a2
(5.32)
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Figure 5.4: Critical Rayleigh number for convective instability as a function of
the mode wavenumber a = Hkx.

The curve Ramin(a) is shown in Figure 5.4. We see that it has an absolute
minimum at some particular value ac. This means that the modes of horizontal
wavenumbers ac/H are the ones that are most easily destabilized (since they
require the smallest value of ∆T all other parameters being fixed, for instance).

Minimizing Ramin(a) over all possible values of a gives us the absolute cri-
terion for linear instability as Ra > Rac, where

Rac = min
a2

(a2 + π2)3

a2
=

27π4

4
(5.33)

This value of Rac is achieved for ac = π/
√

2 ' 2.22. Had we assumed somewhat
different boundary conditions (no-slip, for instance), we would have obtained
a different value for Rac and ac. Since the stress-free ones assume that the
fluid is free to slip against the boundary without any friction, they are the least
restrictive ones, and lead to the lowest Rac. For no-slip conditions, Rac ' 1700
instead, and ac ' 3.1 (cf. Homework).

The Rayleigh number

Why is the Rayleigh number the relevant bifurcation parameter for convection?
The answer lies in understanding the balance of forces present in the momentum
equation. In addition to the usual pressure gradient, we see that two forces are
present: the buoyancy force, which drives the instability, and the viscous force,
which attempts to suppress it. As it turns out, the Rayleigh number controls
the relative amplitude of the two.



12 CHAPTER 5. INSTABILITIES I: CONVECTION

To see why, note that near the onset of convection, nonlinear terms and time
derivatives are negligible (because λ is close to 0). Hence we have

∇ · ũ = 0

∇p̃ ' αT̃gez + ν∇2ũ

w
dT̄

dz
' κT∇2T̃ (5.34)

From a dimensional analysis, assuming that typical vertical and horizontal
lengthscales are the same and close to H, we get from the thermal energy
equation that

w
dT̄

dz
∼ κT

T̃

H2
(5.35)

which implies that

T̃ ∼ H2 ∆T

H

w

κT
(5.36)

We then see that the ratio of the buoyancy term to the viscous term, in the
momentum equation, is dimensionally of the order of

|αgT̃ez|
|ν∇2u|

∼
αgH2 ∆T

H
w
κT

ν |u|H2

∼ Ra (5.37)

as long as |u| ∼ w. Because of incompressibility, this is satisfied whenever the
vertical and horizontal lengthscales are of the same order (which was assumed
earlier)

A small Ra corresponds to fluid systems where the buoyancy force is much
smaller than the viscous force. It is therefore not surprising to note that this
limit also corresponds to the case that is stable to convection. On the other hand
when Ra is large, the buoyancy force dominates, and the convective instability
can occur.

5.2.4 Fastest-growing modes

Beyond the onset of instability, that is, for a fixed value of Ra > Rac, the
fastest growing modes can be found by maximizing λ over all possible kx and
kz = nπ/H. To do so, first note that λn can be rewritten as

λn
H2

κT
= −a

2 + n2π2

2

(
ν

κT
+ 1

)
+

1

2

√
(a2 + n2π2)2

(
ν

κT
− 1

)2

− N2H4

κ2
T

4a2

a2 + n2π2

(5.38)
We have multiplied λn by H2/κT , so that the LHS is now non-dimensional (the
unit time being the thermal diffusion timescale across H). The RHS reveals
another well-known number called the Prandtl number (after Prandtl):

Pr =
ν

κT
(5.39)



5.2. RAYLEIGH-BÉNARD CONVECTION 13

-150

-100

-50

 0

 50

 100

 0  5  10  15  20

la
m

bd
a 

H^
2/

ka
pp

a

a

n=1
n=2
n=3

Figure 5.5: Non-dimensional growth rate λH2/κT for n = 1, 2 and 3, for Ra =
2000 and Pr = 1. This kind of diagram representing growth rate vs. wavenumber
is fairly typical of most instabilities.

in which case

λn
H2

κT
= −a

2 + n2π2

2
(Pr + 1) +

1

2

√
(a2 + n2π2)2 (Pr− 1)

2
+ PrRa

4a2

a2 + n2π2

(5.40)
The figure below show how λn varies with kx for different values of n, for
Pr = 1 and Ra = 2000. We see that, at these parameter values, only n = 1 and
n = 2 are destabilized, and that, for a given kx, λ is always1 largest for n = 1.
This means that we can find the fastest-growing modes by setting n = 1, and
maximize λ with respect to kx.

To do so, it’s easier to use the original quadratic (5.24). Taking its derivative
with respect to k2

x, and setting dλ/d(k2
x) = 0, we get

λ1(ν + κT ) + 2νκT k
2 +

N2π2

H2k4
= 0 (5.41)

This equation, together with (5.24) with n = 1, forms a system of two equations
for two unknown variables, the growth rate λ and wavenumber kx of the fastest-

1Of course, we have not proved that for all values of Ra and Pr. This can also be done
formally, but it’s a little bit harder.
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growing modes. Unfortunately they cannot easily be solved analytically, but can
be solved numerically using, for instance, a Newton Method (cf. Homework).

The technique described here is a fairly standard method for finding the
most rapidly-growing modes of linear instabilities, when λ has a well-defined
maximum for a finite k. This is not always the case, however. We will see that
in some cases, λ can be maximum for k = 0 (an infrared catastrophe) or for
k →∞ (an ultraviolet catastrophe). Usually, however, systems which have such
a catastrophe are ill-posed, in the sense that some physics have been neglected
that would otherwise prevent it. An infrared catastrophe is usually impossible
in any finite-size system (since the domain size itself sets the smallest possible
value of k for the instability). An ultraviolet catastrophe is usually prevented
by taking into account dissipation (which preferentially damps small-scales, and
prevent them from growing). This was illustrated here quite well: the case of
the local convective instability turned-out to have a number of problems, which
are all solved simply by taking into account more relevant physics (domain
boundaries and dissipation).

The bottom line is that it is always preferable to include more physics, but
this can, of course, make the problem too hard to solve analytically. This is
a good example of how the art in applied mathematics lies in knowing how to
find the right trade-off between physical realism and mathematical tractability.


