
Chapter 4

Dispersive waves

In this Chapter we will study a much broader class of waves called dispersive
waves, for which the phase speed and group speeds are different. Since non-
dispersive wave must satisfy ω = α|k|, dispersive waves include any wave whose
dispersion relation is not of that form. Most fluid waves are in fact dispersive.
We will also see that the equations governing these dispersive waves can look
very different from what we commonly think of as ”the wave equation” (e.g.
variants of ∂ttf = c2∇2f). This can sometimes give rise to more existential
questions on the lines of What is a wave? (see the excellent book by Whitham
for a discussion of this simple and amazingly non-trivial question). Interestingly,
we will see that while some of the properties of dispersive waves are very different
from those of non-dispersive ones, the tools used to study them are essentially
the same as those introduced in Chapter 2. To see this, we will study two very
standard, and yet very different kinds of waves: internal gravity waves, and
surface waves (including surface gravity waves and capillary waves).

4.1 Internal gravity waves

4.1.1 General ideas

Internal gravity waves are waves whose restoring force is buoyancy, that is,
Archimede’s force. If a fluid element has density ρe, and is immersed in a
background fluid of density ρb, the force exerted on the element is

Fb = (ρe − ρb)g (4.1)

If the element is denser than the background, then the force is pointing in the
direction of gravity (it sinks), and if it is less dense, then the force is in the
direction opposite to gravity (it rises). A nice way of testing the buoyancy force
is to breathe deeply and exhale deeply while floating in a swimming-pool. The
more air in our lungs, the less dense we are overall, and the higher we float. The
less air in the lungs, the more we sink.

73



74 CHAPTER 4. DISPERSIVE WAVES

Figure 4.1: Schematic example of a gravity wave whose associated fluid motion
is purely vertical.

Consider now a stratified fluid, whose density decreases with height (see
Figure 4.1). This commonly occurs for example in the tropical ocean, where
the warmer water in the surface layers heated by the Sun is less dense than the
cold bottom water. If a fluid element is raised from its original rest position, it
finds itself in a new background that is less dense than itself, and begins to sink
back. It accelerates thanks to the buoyancy force until it reaches its original
position again. When this happens, the buoyancy force drops to zero but the
element is still moving downward, where it gradually finds itself lighter than the
environment. The upward buoyancy force decelerates it, until it finally stops
moving down, and begins to move up again. The process repeats in a wave-like
fashion.

The oscillatory motion resulting from the original displacement is a called
a gravity wave1. Gravity waves are very common in stably stratified media.
They occur in the deep ocean, in the atmosphere, in the interior of stars, etc...
Gravity waves on Earth can reach huge amplitudes. For instance, some gravity
waves in the Ocean, caused by the tides and amplified by the bottom topog-
raphy, can reach amplitudes of several hundred meters (!). Interestingly, they
are barely visible at the surface, but a fluid element (or any animal, submarine,
etc.) finding itself in the wave can be lifted up and down by this amount. Simi-
larly enormous waves can be detected in the lee-side wind-wake of tall mountain
ridges, and commonly trigger the formation of lenticular clouds or other fasci-
nating cloud patterns. In stellar interiors, gravity waves can be excited by tides
caused by a companion star or large planet, or by plunging convective plumes
hitting a stably stratified radiative region.

4.1.2 Internal waves in an infinite domain

The simplest model for internal gravity waves consists of an infinite stratified
domain, and uses the Boussinesq approximation (making all the necessary rel-

1Not to be confused with gravitational waves in astrophysics.



4.1. INTERNAL GRAVITY WAVES 75

evant assumptions). This involves assuming the existence of a background in
hydrostatic and thermal equilibrium. In all that follows, we use the same no-
tations as in Chapter 3. If we further assume that the waves are adiabatic and
non-viscous, the linearized momentum equation, thermal energy equation and
equation of state are

ρm
∂ũ

∂t
= −∇p̃− ρ̃gez

∂T̃

∂t
+ w̃Θ0z = 0

ρ̃

ρm
= −αT̃ (4.2)

where Θ0z (which has to be positive to ensure the fluid is stably stratified)
is either the background temperature gradient, or the difference between the
background temperature gradient and the adiabatic temperature gradient de-
pending on whether we are considering waves in a liquid or a gas. Note how we
have neglected all nonlinear terms assuming that the perturbations to the back-
ground (marked with tildes) are small. In what follows, we now drop the tildes
for convenience of notation. While α and g are usually thought to be constant
(at least on Earth, which is where this application takes us), we let Θ0z be a
slowly varying function of position and time. For simplicity, we only consider
here 2D waves – the main results carry over in 3D, but in 2D the mathemati-
cal derivation is considerably more elegant because we can use a streamfunction.

Assuming that the flow is only in the (x, z) plane, and independent of y, we
define the streamfunction φ as the scalar function that satisfies

u = −∇× (φey)→ u =
∂φ

∂z
and w = −∂φ

∂x
(4.3)

With this definition, the incompressibility condition ∇ · u = 0 is automatically
satisfied, and the curl of the momentum equation becomes a scalar equation:

∂

∂t

(
∇2φ

)
= −αg∂T

∂x
(4.4)

Meanwhile, the thermal energy equation becomes

∂T

∂t
= Θ0z

∂φ

∂x
(4.5)

so that, taking the time derivative of the momentum equation we get

∂2

∂t2
(
∇2φ

)
= − ∂

∂x

(
αgΘ0z

∂φ

∂x

)
(4.6)

The quantity
√
αgΘ0z is usually called the buoyancy frequency and some-

times the Brunt-Väisälä frequency, and denoted by the letter N . We can then
finally write

∂2

∂t2
(
∇2φ

)
= − ∂

∂x

(
N2 ∂φ

∂x

)
(4.7)
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where N could be a slowly varying function of position and time. This is the
governing equation for internal gravity waves. As we can see, it doesn’t really
look much like the standard wave equation.

Finally, note that, as in the case of pressure waves, we can also create an
energy conservation equation. To do so, we dot the momentum equation with
u again, to get

ρm
2

∂|u|2

∂t
= −u · ∇p+ ρmαgwT (4.8)

To get an equation for wT , we multiply the temperature equation by T , which
yields

1

2

∂T 2

∂t
+ wTΘ0z = 0 (4.9)

so that, at all times, we have

ρm
2

∂|u|2

∂t
= −u · ∇p− ρmα

2g2

2N2

∂T 2

∂t
(4.10)

We can recast this, as in the case of pressure waves, in a more conservative form
by integrating over a fixed domain D, and assuming either periodic boundary
conditions or that all perturbations vanish on the surface of D. Then

∂ED
∂t

=
ρmα

2g2T 2

2

∂

∂t

(
1

N2

)
(4.11)

where

ED = ρm

∫
D

(
|u|2

2
+
α2g2

2

T 2

N2

)
dV (4.12)

As in the case of pressure waves, we find that the total energy in this domain
(with these boundary conditions) only changes if the background, characterized
by N , depends on time.

4.1.3 Monochromatic plane wave solutions

The dispersion relation for internal gravity waves

Let’s first consider the case where N is constant. Since the governing wave
equation (4.7) has constant coefficients, we can look for plane monochromatic
wave solutions of the form

φ(x, z, t) = φ̂(k)eik·x−iωt (4.13)

Plugging this solution into (4.7) we find that

k2ω2 = k2
xN

2 (4.14)

where k2 = k2
x + k2

y, so the dispersion relation is simply

ω2 =
k2
x

k2
N2 (4.15)
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This expression has a number of important consequences. First, note that by
contrast with the case of pressure waves, the dispersion relation depends on the
direction of the wave-vector. These waves are anisotropic (meaning that they
know about a preferred direction). This is not surprising – since gravity is the
restoring force, and since that force only operates in a particular direction, the
waves have to know the difference between the vertical and horizontal directions.

Next, note that ω only depends on the direction of k and not on its magnitude
(to see this, simply write kx/|k| as the cosine of the angle between k and the
horizontal for instance). This means that ω is independent of the wavelength of
the wave – quite different from sound waves where ω is proportional to |k|.

Finally, note that ω cannot be larger than N , or in other words, the maxi-
mum frequency of an internal gravity wave is N . This is achieved for waves for
which k2

x = k2, which have kz = 0. These are modes that only oscillate up and
down without horizontal motion. As the wavevector goes from purely vertical
to more-and-more horizontal (i.e. as the amplitude of kz grows), ω decreases.

Local properties of the waves, and the phase speed

Let’s first think about what the wave-crests look like. As usual, they are given
by the maximas and minimas of the phase function θ = k ·x−ωt, and are simply
parallel straight lines. Furthermore, since the gradient of θ is k (by definition)
and since the gradient of a function is perpendicular to its isolines, then we know
that k must be perpendicular to the wave-crests. So far, this is just as in the
case of monochromatic plane pressure waves.

We now consider the fluid motion associated with these waves. Since u =
−∇× (φey), we can rewrite this as u = −iφk×ey. We see from this expression
that the fluid moves perpendicular to the wave-vector k, and therefore parallel
to the wave crests. In this sense, gravity waves are transverse waves, by contrast
with the pressure waves which are longitudinal waves (where the fluid velocity
was parallel to k). Another way of seeing this is to look at how a fluid element
in this flow actually moves. The equations controlling the position of the fluid
element (xe(t), ze(t)) are

dxe
dt

= u and
dze
dt

= w (4.16)

Recalling that only the real part of a solution has a physical meaning, so we
have

dxe
dt

= <(ikzφ̂e
ik·x−iωt)

dze
dt

= −<(ikxφ̂e
ik·x−iωt) (4.17)

Let’s decide for instance that φ̂ is real (this sets the phase of the oscillation to
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be a sine or a cosine). We then have

dxe
dt

= −φ̂kz sin(k · x− ωt)

dze
dt

= φ̂kx sin(k · x− ωt) (4.18)

which can be integrated to give

xe(t) = x0 − φ̂
kz
ω

cos(k · x− ωt)

ze(t) = z0 + φ̂
kx
ω

cos(k · x− ωt) (4.19)

Since the two are in phase, the particle paths are straight segments of horizontal
length Lx = 2φ̂kz/ω and vertical height Lz = 2φ̂kx/ω = 2φ̂k/N .

Finally, let’s see how the wave crests move. To do this consider the function
kxx+kzz−ωt: at constant x, this function is invariant if z−(ω/kz)t is constant,
or in other words if z moves with velocity ω/kz. At constant z, similarly, this
function is invariant if x moves with velocity ω/kx. This would suggest that
the phase velocity is given by (ω/kx, ω/kz). However, the phase velocity is not
really a vector. If this were true, we should be able to write the phase as a
function of x − cpt, which is clearly not the case. In general, we then simply
define the phase velocity to be

cp =
ω

|k|
=
|kx|
k2

N (4.20)

for gravity waves.
Figure 4.2 summarizes what we have learned so far, and gives more insight

into the physics of the waves. It shows snapshots of a monochromatic plane
wave with kx = kz at t = 0 and at a time t = δt very shortly thereafter. At
t = 0, focussing on the area near the center of the image we see the fluid going
down and to the left, parallel to the wave crests, transporting heat from higher
layers to lower ones. The initial temperature perturbation at t = 0 in that
region is zero, but gradually increases as a result of the advected heat. At the
slightly later time, we see that the temperature has increased, and the warmer
fluid being somewhat more buoyant, begins to resist the downward fluid flow
which slows down. As a result, the wave crest apparently propagates following
the green arrows (from bottom right to top left). Later on (not shown) the
temperature in the center region will continue to increase until the resulting
buoyancy becomes sufficient to cause a reversal of the flow. When this happens,
the fluid will start to move from the bottom left to the top right, bringing cold
fluid up to gradually cool the center region - and the cycle will eventually repeat.

4.1.4 Wave packet equations

As in the case of pressure waves, we can study the evolution of internal gravity
waves in a medium with non-constant N by consider a wave packet solution.
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Figure 4.2: Left: Temperature perturbations at two different times (t = 0 and
t = δt where δt is small) for a plane monochromatic wave with kx = kz. Right:
Velocity perturbations (both ux or uz, as the two are exactly in phase) at the
same times. The dashed lines mark the center of the image, to guide the eye.
The green arrows mark the direction of propagation of the wave crests.

We construct it by considering the function φ and set

φ(x, z, t) = A(X,Z, τ)eiθ (4.21)

where the slow time is now called τ to avoid any confusion with the temperature
field T . As before, we have k = ∇θ and ω = −∂θ/∂t, which implies that

∂k

∂τ
+∇εω = 0 (4.22)

The wave packet equations can be derived, step-by-step, as we did in the
case of pressure waves, by plugging the ansatz (4.21) into (4.7), and equating
the various orders in ε to one-another. This is left as a possible course project.
However, the result can also be directly obtained practically without any further
math, by recalling that

• The dispersion relation remains unchanged, so

ω2 =
k2
x

k2
N2 → ω = Ω(k;X, τ) =

∣∣∣∣kxk
∣∣∣∣N(X, τ) = ±kx

k
N(X, τ) (4.23)
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where the + sign is chosen if kx > 0, and the − sign is chosen if kx < 0.

• The group velocity is given by the derivative of the dispersion relation
with respect to components of k, so

cg = ±
(
∂Ω

∂kx
,
∂Ω

∂kz

)
= ±

(
N

k
− Nk2

x

k3
,−Nkxkz

k3

)
= ±N

k

(
ex − kx

k

k2

)
(4.24)

where the sign ± depends on the selected branch of the dispersion relation.

Note that while we had cp = |cg| for pressure waves, here the amplitudes
of the phase and group speeds are quite different. We have

|cg| = cg =
N |kz|
k2

(4.25)

while cp was given by cp = N |kx|/k2. Unless kx = kz, the two velocities
have different magnitudes. Furthermore,

cg · k = ±N
k

(
ex − kx

k

k2

)
· k = 0 (4.26)

or, in other words, the group speed is perpendicular to the wave vector.
Since the latter is itself perpendicular to the wave crests, then the group
speed is along the wave crests (which is really not very intuitive!).

Finally, note that

cg · ez = ±N
k

(
ex − kx

k

k2

)
· ez = ∓N kxkz

k3
(4.27)

while the phase velocity in the z direction is ω/kz = ±Nkx/(kkz). This
implies that the two are always of opposite sign. Hence if the group speed
points up, the phase will appear to propagate downward, and vice versa.
Since it is the group speed that carries any significant information (such
as energy, for instance), and since the latter always points away from the
source, we are forced to conclude that the wave crests in a gravity wave
will always appear to be moving towards the source (which is even less
intuitive)! These effects are all illustrated in Figure 4.3

• The evolution of the frequency is given by

∂ω

∂τ
+ cg · ∇εω =

∂Ω

∂τ
= ±kx

k

∂N

∂τ
(4.28)

• The evolution equation for the wavevector is given by

∂k

∂τ
+ cg · ∇εk = −∇εΩ = ∓kx

k
∇εN (4.29)
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Figure 4.3: Temperature perturbations at two different times (the time on the
right being later than the time on the left) for a wave packet, with kx = kz.
The black arrow marks the direction of the group velocity. The green arrows
mark the direction of propagation of the wave crests. Note the apparent distor-
tion of the wave packet near the edges, which arises due to numerical artefacts
introduced by the numerical integration scheme used.

• The evolution equation for the amplitude can be found by energy conser-
vation arguments, where the energy conservation equation is given by

∂E

∂τ
+∇ε · (cgE) = RHS (4.30)

To use this last piece of information, we first have to determine what E is in
terms of A, and then what the RHS from energy conservation in the original
equations.

To find what E is in terms of A, note that (to the lowest order in ε)

u = ∂φ/∂z = ikzAe
iθ

w = −∂φ/∂x = −ikxAeiθ

T =
Θ0zkx
ω

Aeiθ (4.31)

where the last equation comes from ∂T/∂t+ Θ0zw = 0. Plugging these into E
as obtained in equation (4.12), we find that the energy is

E =
ρm
2

(|u|2 + |w|2) +
ρmα

2g2

2

|T |2

N2

=
ρm
2

(k2
x + k2

z)|A|2 +
ρmα

2g2Θ2
0z

2N2

k2
x

ω2
|A|2

= ρmk
2|A|2 (4.32)

Next, recall that the RHS of the energy equation (4.11) was

RHS =
ρmα

2g2T 2

2

∂

∂t

(
1

N2

)
(4.33)
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Re-written in terms of A, we get

RHS =
ρmα

2g2

2

Θ2
0zk

2
x

ω2
|A|2 ∂

∂t

(
1

N2

)
=
ρmN

2k2

2
|A|2 ∂

∂t

(
1

N2

)
(4.34)

Combining all this information finally implies that the wave amplitude equa-
tion can be obtained from:

∂

∂τ
(|A|2k2) +∇ ·

(
cgk

2|A|2
)

=
N2k2|A|2

2

∂

∂τ

(
1

N2

)
(4.35)

4.1.5 Example of application: trapping of internal waves
in the thermocline

The oceanic thermocline is a stable, strongly stratified region located between
the surface mixed layer (which typically extends down to 50-100m, depending on
the season) and the deep ocean (below about 200m, depending on the season).
It is shallow enough to be heated by the surface illumination, but deep enough
not to be mixed by the surface wind-induced turbulence. In both regions above
and below the thermocline, the stratification is weak (N is close to 0), while N
can be quite significant in the thermocline.

Because of this, internal waves generated in the thermocline are trapped.
To see this, let’s model N in the thermocline as a parabola, taking Z = 0 at
the interface with the upper mixed layer, and Z = H at the bottom of the
thermocline (and beginning of the deep ocean water). We thus have

N(Z) = N0Z(H − Z) (4.36)

The profile is shown in Figure 4.4
Using the ray tracing methods introduced in the case of pressure waves in

stars, we see that since N only depends on Z, any internal wave generated in
the thermocline will preserve its frequency and horizontal wavenumber. As a
result, kz must vary so that

ω2 = N2 k2
x

k2
x + k2

z

→ kz = ±
(
N(Z)2

ω2
− 1

)1/2

kx (4.37)

This implies that kz tends to 0 whenever N = ω (at these points, we anticipate
that the waves must refract, i.e. change direction). The ray paths of the waves
can by found by solving the equation

dZ

dX
=

cg · ez
cg · ex

=
−Nkxkzk3

N
k −

Nk2x
k3

=
−kxkz
k2 − k2

x

= −kx
kz

=

(
N(Z)2

ω2
− 1

)−1/2

(4.38)

Note that this does not appear to have simple analytical solutions, but a solution
to this equation can easily be found by numerical integration (see Figure 4.5).

We see that the thermocline acts as a wave-guide for internal waves, which
bounce back and forth between Zmin and Zmax, the two depths where N is equal
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Figure 4.4: Schematic profile of the buoyancy frequency in the thermocline in
this toy model.

to the initial frequency of the wave. These upper and lower turning points are
thus found by solving the equation N(Z) = ω, which in our case reduces to

N0Z(H − Z) = ω (4.39)

As in the case of pressure waves, we anticipate that the refraction induces a
phase shift in the wave. This shift can be studied formally (cf. Project).

Finally, note that even in the absence of trapping (i.e. even when N is con-
stant), internal waves usually cause very little motion near the surface. This
will be studied in depth later. Internal waves of very large amplitudes (i.e. non-
linear waves) can be caused by tidal flows interacting over shallow topography,
for instance, or other mechanisms such as submarines passing through the ther-
mocline, deep large-scale eddies, etc. However, these waves are nearly invisible
at the surface!

4.1.6 Generation of steady internal waves by flow over
topography.

This section is adapted from Chapter 10 of the textbook “Waves in the Ocean
and atmosphere” by J. Pedlosky. See also the book “Internal Gravity Waves”
by B. Sutherland.

In this section, we change gear somewhat and move away from the wave packet
approximation to look at the problem of internal waves generated in a fluid
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Figure 4.5: Trapping of gravity waves by the thermocline. The ray paths bounce
between the positions where N(Z) = ω where ω is the frequency of the wave
(ω = 0.1 for the red path, and ω = 0.2 for the green path. Here we have used
N0 = H = 1.

by the interaction of a steady flow with topography. This is a very common
situation in the atmosphere, where internal waves are generated as winds pass
over hills and mountains. It is also a very common scenario in the ocean, as
large-scale azimuthal or meridional currents pass over bottom topography. In a
number of cases, this interaction leads to the generation of steady wave patterns.
A common, and visually stunning example is that involved in the formation of
lenticular clouds near mountains. These are caused by the condensation of wa-
ter due to the change in temperature/pressure associated with the waves. We
will now see how these waves are generated, and how to model them.

A simple model

We begin by considering a minimal model of this problem. We model the ocean
or atmosphere as a semi-infinite infinite domain, with the average height of the
bottom boundary located at z = 0 and z unbounded in the positive direction.
We consider again for simplicity that the flow is 2D. The domain is infinite in
the x direction.

The lower boundary is not flat, and its height is given by the function z =
h(x). For simplicity, we will assume that h(x) is periodic, and of the form

h(x) = h0 sin(kx) (4.40)

Note that since the problem we are about to study is linear, a general solution
for arbitrary topography can be obtained by linear combination of the solutions
for periodic topography, in the Fourier sense.
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Figure 4.6: Schematic example of flow over sinusoidal topography, here with
h0 = 0.1 and k = 1.

Above z = h(x) lies a stratified fluid, which we assume has a constant buoy-
ancy frequency N . The fluid is not at rest, however, and supports a background
horizontal flow U = Uex, which is assumed to be constant for simplicity. That
flow interacts with the bottom topography and drives the formation of internal
gravity waves. We aim to characterize this internal wave field. In all that fol-
lows, we will assume that the amplitude of the waves generated is small, and
does not affect the mean flow much in return. We will determine a posteriori
under which conditions this may be true.

We assume that the total fluid velocity, including the background and the
perturbations, is given by u = Uex + ũ and satisfies the Boussinesq equations
derived in Chapter 3. Because of the added presence of the background flow,
the wave equation (4.7) derived earlier to model internal gravity waves is no
longer valid. We can follow the same the steps however, taking the background
flow into account, to find out how it should be modified for our current purpose.

With u = Uex + ũ, we have

Du

Dt
=
∂ũ

∂t
+ U

∂ũ

∂x
+ ũ · ∇ũ ' ∂ũ

∂t
+ U

∂ũ

∂x
(4.41)

in the linear approximation. A similar result applies for DT/Dt, so that the
governing equations (4.2) remain the same, except that all the ∂/∂t must be
replaced by ∂/∂t+U∂/∂x. This then suggests that we should introduce a new
variable ξ = x − Ut, for which ∂/∂x → ∂/∂ξ and ∂/∂t → ∂/∂t − U∂/∂ξ. We
then finally recover exactly the gravity wave equation, with x replaced by ξ.
Physically speaking, this means that we have simply changed coordinates to



86 CHAPTER 4. DISPERSIVE WAVES

put ourselves in a frame of reference that is moving with the mean flow. In
that reference frame, there is no mean flow so (4.7) applies. The boundary
conditions, however, become time-dependent.

To model the boundary conditions, note that the bottom boundary is im-
permeable to the fluid, which means that the component of the fluid velocity
normal to the boundary must be 0. Since the normal to the surface z = h(x) is
given by ∇(z − h(x)) = ez − ∂h

∂xex, the boundary condition reads

u · ∇(z − h(x)) = 0→ u · ez = u · ∂h
∂x

ex (4.42)

Linearizing this (assuming ũ is small compared with U), we have

w̃ = U
∂h

∂x
= Uh0k cos(kx) (4.43)

We now see that the condition |ũ| � U is equivalent to kh0 � 1 – waves will
be of small amplitude if the topography is of small amplitude, as measured by
kh0.

In the moving frame, the boundary condition becomes

w̃ = Uh0k cos(k(ξ + Ut)) (4.44)

In other words, the topography appears to creates a time-dependent forcing
on the lower boundary. Finally, note that this boundary condition should be
applied at z = h(x). However, if the topography is small, we can also apply the
boundary condition at z = 0 instead by invoking a Taylor expansion (w̃(z =
h) = w̃(z = 0) +O(kh)).

To summarize, we are now trying to solve

∂2

∂t2
((∂ξξ + ∂zz)φ) = −N2 ∂

2φ

∂ξ2
(4.45)

where φ is the streamfunction satisfying ũ = ∂φ/∂z and w̃ = −∂φ/∂ξ, and
where we apply the bottom boundary condition

∂φ

∂ξ

∣∣∣∣
z=0

= −Uh0k cos(k(ξ + Ut)) (4.46)

The solutions, and the radiation condition

Let’s seek solutions of the form

φ = Φ(z)ei(kξξ−ωt) (4.47)

(we have to keep the dependence in z separate since the system is not infinite
in that direction). We then have

−ω2(−k2
ξΦ +

d2Φ

dz2
) = N2k2

ξΦ (4.48)
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which can be written as

d2Φ

dz2
=

(
1− N2

ω2

)
k2
ξΦ (4.49)

We see that there will be two types of solutions depending on the value of
N2/ω2: oscillatory and exponential (evanescent). This is not surprising: as we
saw earlier from the dispersion relation for internal waves in an infinite domain,
gravity waves can only exist with frequencies that are smaller than N . The
same applies here.

As with many problems of this kind, the eigenvalues (here, kξ and ω) are
found by applying boundary conditions to the system. Since we defined φ as a
complex variable, we have to rewrite the boundary condition (4.50) as

<
{
∂φ

∂ξ

∣∣∣∣
z=0

}
= −Uh0k cos(k(ξ + Ut)) (4.50)

which implies

<
{
ikξΦ(z)eikξξ−iωt

∣∣
z=0

}
= −Uh0k cos(k(ξ + Ut))→

−kξΦI(0) cos(kξξ − ωt)− kξΦR(0) sin(kξξ − ωt) = −Uh0k cos(k(ξ + Ut))

where ΦR(0) = <(Φ(0)) for short, and similarly for the imaginary part. This
needs to be true for all time and all ξ. This can only happen if kξ = k, ω = −kU ,
ΦR(0) = 0 and ΦI(0) = Uh0. We can now plug this back into the governing
equation, requiring that

d2Φ

dz2
=

(
k2 − N2

U2

)
Φ (4.51)

with Φ(0) = iUh0 as a lower boundary condition.
Whether the wave field has an exponential or an oscillatory structure will

therefore depend quite sensitively on the quantity

Fr =
k|U |
N

(4.52)

This is called a Froude number. If Fr� 1, the background flow is called subcrit-
ical for the topography considered. If Fr� 1, the flow is called supercritical for
that topography. Note that Fr only depends on the strength of the stratification
N and the spatial scale k−1 of the topography, but not on its height. Let’s now
look at both cases in turn.

If Fr � 1, then Φ(z) has an exponential form. Keeping only the term that
does not diverge as z →∞, we simply have

Φ(z) = iUh0 exp(−mz) where m =

√
k2 − N2

U2
(4.53)

The horizontal and vertical velocities associated with this streamfunction are

w̃ = −<
{
∂φ

∂ξ

}
= Uh0k exp(−mz) cos(kξ − ωt) = Uh0k exp(−mz) cos(kx)

ũ = <
{
∂φ

∂z

}
= Uh0m exp(−mz) sin(kξ − ωt) = Uh0m exp(−mz) sin(kx)(4.54)
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We see that these quantities are actually stationary when written in the original
frame of reference. In other words, the patterns created by the interaction of a
steady flow with topography are, at linear order, also steady. We see that the
horizontal flow is in phase with the topography, but the vertical flow is out of
phase with it. Both decay exponentially with height on a vertical lengthscale
1/m, which, for large-enough flow velocity U , is close to the typical horizontal
lengthscale of the topography. In other words, the wave-induced flow is very
much localized near the topography. This is illustrated in Figure 4.7 which
shows the vertical velocity field above the ground, for a case where m = k/2.
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Figure 4.7: Solution for w̃ in the case Fr� 1, with k = 1 and m = 1/2.

If Fr� 1, by contrast, the solutions are oscillatory:

Φ(z) = A+e
imz +A−e

−imz where m =

√
N2

U2
− k2 (4.55)

This time, while we know that A+ +A− = iUh0, we need another condition to
find A+ and A− independently. This condition is called the radiation condition,
and is basically a causality condition that sets the direction of propagation of
energy. In this particular system, we expect the wave energy to come from
the topography and propagate upwards2. To apply the radiation condition we
must remember that energy propagates in the direction of the group velocity.
Far from the topography, the latter is given by equation (4.24) where, in the
notations of this section kz is ±m (depending on the direction of propagation)
and kx = k. We see that for cg · ez > 0, we have to have a negative value of m.
This finally implies that

Φ(z) = iUh0e
−imz (4.56)

2If, somehow, there was a wavemaker at infinity radiating waves downward, then we would
require that the energy propagates downward.
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As before, we can calculate the actual velocities induced as

w̃ = −<
{
∂φ

∂ξ

}
= Uh0k cos(kξ −mz − ωt) = Uh0k cos(kx−mz)

ũ = <
{
∂φ

∂z

}
= Uh0m cos(kξ −mz − ωt) = Uh0m cos(kx−mz) (4.57)

Again, the velocity field is stationary in the original reference frame. The ver-
tical component of this velocity field is illustrated in Figure 4.8, in a case with
m = k/2. Note that this time, ũ and w̃ are in phase, which has important
consequences in the next section.
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Figure 4.8: Solution for w̃ in the case Fr � 1, with k = 1 and m = 1/2. Note
how the lines of constant w̃ are tilted in the direction of the flow U .

These results explain a number of things. First, however, recall that we
can now add solutions like this together to create the solution for any possible
topography. As a result, it can easily be shown that if the topography is lo-
calized, then the perturbations will also be localized, around that topography.
This then explains the formation of lenticular clouds very close to tall moun-
tains that stand in the way of the wind. It also explains why these lenticular
clouds (and other gravity-wave induced clouds) are always relatively stationary
in comparison with the mountain range that generates them. Finally this also
explains why in some cases the cloud pattern has a single cell in the vertical
direction, while in others, multiple cells exist stacked on top of each other – this
merely depends on the value of k, N and U . Similar features exist in the bottom
of the ocean, but are not as obviously spectacular (since we usually can’t see
them).
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Effect of the waves on the background flow

We expect the bottom topography to create a drag on the flow passing above it,
and to gradually slow it down. Let’s now study this effect. This is an example
of wave-mean flow interaction. We shall revisit this issue in the next section as
well.

To study the effect of the waves on the mean flow, let’s consider again the
momentum equation, but this time keep all the nonlinear terms. Ignoring vis-
cosity again, we have in the horizontal direction,

∂ũ

∂t
+ (ũ+ U)

∂ũ

∂x
+ w̃

∂ũ

∂z
= −∂p̃

∂x
(4.58)

We now use the mass continuity equation (∇ · ũ = 0) to rewrite this as

∂ũ

∂t
+ U

∂ũ

∂x
+

∂

∂x
(ũ2) +

∂

∂z
(w̃ũ) = −∂p̃

∂x
(4.59)

Next, we average this equation horizontally, assuming periodicity in x, and
multiply by ρm to get

ρm
∂ū

∂t
+

∂

∂z
ρmw̃ũ = 0 (4.60)

This shows that the rate of change in the average horizontal flow is quadratic
in the wave amplitude. For small amplitude waves, this term is small (and was
indeed neglected at linear order). But if we don’t neglect it, then this term tells
us how the mean flow is slowed down by the waves caused by the passage over
the topography. Let’s evaluate the momentum flux ρmw̃ũ.

In the case where Fr� 1, then

ρmw̃ũ = ρmU
2h2

0km exp(−2mz)cos(kx) sin(kx) = 0 (4.61)

This implies that the perturbation flow induced by the interaction between the
background and the topography has no momentum flux at all, and will therefore
not have any effect on the mean flow whatsoever! This somewhat counter-
intuitive result is nevertheless correct, and has been verified experimentally.

In the case where Fr� 1, then

ρmw̃ũ = ρmU
2h2

0kmcos2(kx−mz) =
ρm
2
Uh2

0k
√
U2k2 −N2 (4.62)

In this limit the waves transport net momentum (as well as energy) away from
the bottom topography. The rate at which this happens depends quadratically
on the amplitude of the topography, h0 – this is not surprising, as we expect
that the larger h0 is, the stronger waves are driven. It also increases with U ,
which again is not surprising. Everything else being equal, we also find that the
momentum flux is larger if the topography has a smaller wavelength (larger k),
or if the fluid is less stratified (smaller N). The reason for the former is also fairly
intuitive : the more ”bumps” there are, the larger the drag on the background
flow. The latter is more subtle, but is related to the vertical displacement – the



4.1. INTERNAL GRAVITY WAVES 91

larger N , the smaller the vertical displacement caused by the wave (larger m),
hence the smaller the momentum flux.

However, note that ρmw̃ũ is independent of z in this idealized model, which
implies that the horizontal mean flow does not evolve with time (see equation
(4.60)). In other words, the waves transport momentum upward without affect-
ing the mean flow. Of course, in a real system the momentum flux is unlikely
to be constant: the background density, buoyancy frequency, and mean flow
velocity usually vary slowly with height and time. Also, waves dissipate (either
by thermal diffusion or viscous dissipation) or can steepen nonlinearly if they
have large enough amplitudes. All of these effects can cause the momentum flux
to depend on z, and therefore change the mean flow. This is the wave-induced
drag mentioned earlier. It is interesting to note that the drag is essentially non-
local, i.e. the wave can propagate a long way before dissipating and exchanging
momentum with the background, so the location where the mean flow slows
down could be very far away from the topography! This actually occurs in
the Earth’s atmosphere, and has been proposed as a mechanism to slow down
the cores of stars (via gravity waves that are generated at the bottom of the
convection zone).




