
Chapter 3

Incompressibility and the
Boussinesq approximation

This Chapter is based on the paper by Spiegel & Veronis, 1960. See also the
textbook “Fluid Mechanics” by Kundu & Cohen, pages 124-128.

In all that follows, we will be studying phenomena that occur on timescales
that are much longer than the oscillation timescale for sound waves, and where
the fluid motions are a lot slower than the sound speed. We would therefore
like to find a way of “filtering out” sound waves entirely from our governing
equations, to avoid having to discuss them again and again. Since they prop-
agate via compression, we will do so by finding under which conditions a fluid
behaves in an incompressible way, even when it isn’t strictly incompressible.
There are in fact a few different ways of doing this. Here, we will treat the
simplest case, and derive the so-called Boussinesq equations of fluid dynamics
(named after Joseph Boussinesq), which provide a very good approximation to
the Navier-Stokes equations for water (which is already very nearly incompress-
ible) and also, perhaps surprisingly, astrophysical plasmas in some limit that we
will make explicitly clear. The derivation of the Boussinesq approximation for
liquids and gases is quite similar up to a point. We now look at both in turn.

3.1 Problem setup

Let’s begin by posing the problem. We consider a domain of height H, with
unspecified boundary conditions. The domain can be infinitely wide if desired,
or have a finite horizontal extent. We then assume that there is a steady back-
ground state, with density, pressure and temperature given by

ρ̄(z) = ρm + ρ0(z)

p̄(z) = pm + p0(z)

T̄ (z) = Tm + T0(z) (3.1)
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64CHAPTER 3. INCOMPRESSIBILITY AND THE BOUSSINESQ APPROXIMATION

where the quantities with the subscript m are the vertical means of ρ̄, p̄ and
T̄ over the domain, and the functions ρ0(z), p0(z) and T0(z) are the deviations
from the mean. The background is assumed to be in mechanical and thermal
equilibrium, and satisfies the equation of state, so that

dp̄

dz
= −ρ̄g

d

dz

(
k
dT̄

dz

)
= −Q̄(z) (3.2)

where Q̄ is the net heat input into the system (local heating minus local cooling).
It also satisfies an equation of state, which we assume to be the perfect gas
equation of state for a gas,

p̄ = Rρ̄T̄ (3.3)

or
ρ̄ = ρ̄(T̄ ) (3.4)

for a liquid.

3.2 The incompressibility condition

The idea behind the Boussinesq approximation is to restrict the analysis to that
of systems whose background density and temperature do not vary much overall
around their mean values1. This is an excellent approximation for instance
for the ocean, where the density and temperature vary by about 1% and 10%
respectively between the bottom and the surface (note that temperature should
always be measured in Kelvins). It can also be a reasonable approximation for
the Earth’s atmosphere but only if one considers regions whose heights are much
smaller than the density scaleheight (which was around 10km), and that do not
host large temperature gradients. Similarly, it is a reasonable approximation in
stellar interiors, if one only considers regions whose height is much smaller than
the local density and temperature scaleheights. The idea behind that restriction
is that if the background state does not vary much, then even if a large scale
flow moves a fluid element from the bottom to the top of the domain (and vice
versa), the difference between temperature and density in the element and in
the ambient fluid will never be very large.

Hence, let’s introduce the scaleheights df (for the field f being either ρ, T )
defined as

df = fm

∣∣∣∣∣
(
df̄

dz

)−1
∣∣∣∣∣ = fm

∣∣∣∣∣
(
df0

dz

)−1
∣∣∣∣∣ (3.5)

and let’s define the small parameter

ε =
H

min(dT , dρ)
(3.6)

1This first step is in fact one of the main differences with the anelastic approximation.
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where H is the height of the domain. ε is small as long as H is smaller than
the smallest of the two scaleheights. We shall therefore assume it is so. Note
that, by construction, ε is also related to the relative change in the background
between the top and the bottom of the domain. Indeed, defining

∆ρ0 = |ρ̄(H)− ρ̄(0)| = |ρ0(H)− ρ0(0)| ' H
∣∣∣∣dρ0

dz

∣∣∣∣ ' ρmHdρ ' ερm (3.7)

if the smallest scaleheight is dρ. If ε is constructed from dT instead, then this
should be viewed as an order of magnitude estimate rather than a Taylor ex-
pansion, as long as dρ and dT are similar. In the general case, we therefore have
∆ρ0 ∼ ερm and ∆T0 ∼ εTm.

We now consider fluid motions on this background. We let the velocity field
be u, and non-dimensionalize it as

u = U û (3.8)

where U is a typical velocity in the fluid.
The flow induces perturbations in ρ, T and p, so that we now have

ρ(x, y, z, t) = ρ̄(z) + ρ̃(x, y, z, t)

p(x, y, z, t) = p̄(z) + p̃(x, y, z, t)

T (x, y, z, t) = T̄ (z) + T̃ (x, y, z, t) (3.9)

Note that if the flow merely moves an element around (without too much com-
pression/expansion), the largest possible perturbation in density or temperature
is of the order of the top-to-bottom difference in the field considered. Hence we
anticipate that ρ̃ and T̃ are of the order of ∆ρ0 and ∆T0 respectively. We
therefore non-dimensionalize them as

ρ0(z) + ρ̃ = ∆ρ0(ρ̂0 + ρ̂) and T0(z) + T̃ = ∆T0(T̂0 + T̂ ) (3.10)

where we assume that all the hatted quantities are now of order unity. Finally,
we also have to non-dimensionalize the spatial dimensions – and here the obvious
lengthscale isH – and time – here, the obvious timescale is H/U (i.e. the domain
size divided by the typical velocity). So we set x = Hx̂ and t = (H/U)t̂.

Let’s first look at the mass continuity equation. We have:

U

H
∆ρ0

∂ρ̂

∂t̂
+
U

H
(ρm + ∆ρ0(ρ̂0 + ρ̂)) ∇̂ · û + ∆ρ0

U

H
û · ∇ (ρ̂0 + ρ̂) = 0 (3.11)

which implies that

∂ρ̂

∂t
+

(
1

ε
+ ρ̂0 + ρ̂

)
∇̂ · û + û · ∇̂ (ρ̂0 + ρ̂) = 0 (3.12)

Keeping only the lowest-order term in ε, we find that

∇̂ · û = 0 (3.13)
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This equation is precisely what we were looking for: if ∇̂ · û = 0, then there
is no convergence nor divergence of flows, and in other words, no compression
or expansion. Although we already knew this to be the case for liquids, we see
that in the Boussinesq approximation, this is also true for gases. Furthermore,
if ∇̂ · û replaces the mass continuity equation, there is no possibility for sound
waves anymore. Note, however, that this is only true to the lowest order in the
approximation for gases, and we will need to remember that shortly.

At this point, we now look at the cases of liquids and gases separately.

3.3 The Boussinesq approximation for liquids

Let’s look at the equation of state first, going back to dimensional quantities.
Taking ρ = ρ(T ), and subtracting the background state relationship, we get

ρ̃

ρm
=

1

ρm

(
∂ρ

∂T

)
ρ̄,T̄

T̃ ≡ −αT̃ (3.14)

which defines α as the coefficient of thermal expansion. It is defined with a
negative sign, since hotter liquids are usually less dense than cooler ones.

Next, we study the momentum equation. Subtracting the background state
hydrostatic equilibrium, it now reads

(ρm + ∆ρ0(ρ̂0 + ρ̂))
U2

H

D̂û

D̂t̂
= − 1

H
∇̂p̃−∆ρ0ρ̂gez +

U

H2
ρmν∇̂2û (3.15)

where p̃ was left “as is” because we don’t yet know what dimension we expect
it to be. Note that we have defined the viscosity ν = µ/ρm, and have simplified
the viscous stress tensor on the grounds that ∇̂ · û = 0. On the LHS, one can
neglect the terms of order ε. Rearranging the equation then yields

D̂û

D̂t̂
= − 1

ρmU2
∇̂p̃− gH

U2

∆ρ0

ρm
ρ̂ez +

ν

UH
∇̂2û (3.16)

The LHS is now explicitly of order unity, and we see that RHS of the non-
dimensional momentum equation contains a number of terms, each multiplied
by a non-dimensional parameter that describes how important that term is. For
the equation to be balanced, at least one of the RHS terms must be of order
unity as well.

The non-dimensional term multiplying the viscous force is the inverse of the
the Reynolds number of the flow, usually defined as

Re =
UL

ν
(3.17)

where U is a characteristic velocity, L a characteristic lengthscale (here, H),
and ν is the viscosity. A Reynolds number measures the importance of viscosity
in a fluid. When it is much smaller than one, viscosity is very important. When
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it is much larger than one, viscosity is usually negligible. Since the presence or
absence of viscosity has little to do with sound waves, the size of the Reynolds
number has little bearing on the Boussinesq approximation – it is what it is.

We see that the term containing gravity (usually called the buoyancy term)
is multiplied by ε times gH/U2. Note that we can’t just ignore it since its
size depends on the value of U , which we have not specified yet. The product
εgH/U2 is really the ratio of the potential energy of a typical density perturba-
tion (∆ρ0gH) to its kinetic energy ρmU

2. For many fluids for which the velocity
is large (such as atmospheric jets for instance), this term is often negligible, in
which case we may just ignore it. However, in some fluids for which the effect of
buoyancy is important (such as convection, or internal waves in the ocean) we
really want to keep the buoyancy term, in which case it must be of order unity.
This implies that the typical velocity scale is expected to be of order

U ∼
√
εgH (3.18)

This is the assumption made in the Boussinesq approximation.
In that case, going back to dimensional quantities we then have

Du

Dt
= − 1

ρm
∇p̃+

ρ̃

ρm
g + ν∇2u (3.19)

Finally, let’s look at the thermal energy equation. Starting with

ρcv
DT

Dt
= ∇ · (k∇T ) +Q+ φ (3.20)

subtracting the background state, and linearizing around it by neglecting all
terms that are of order ε, we have

ρmcv
DT̃

Dt
+ ρmcvw

dT0

dz
= ∇ · (k∇T̃ ) + Q̃ (3.21)

where we neglected viscous dissipation (it is usually very small for liquids).
These equations form together the Boussinesq equations for liquids, and are

summarized as

∇ · u = 0
Du

Dt
= − 1

ρm
∇p̃− αT̃g + ν∇2u

DT̃

Dt
+ w

dT0

dz
=

1

ρmcv
∇ · (k∇T̃ ) +

Q̃

ρmcv
(3.22)

where we have eliminated ρ̃ entirely using the equation of state.
Note that another common form of these equations, assuming that the sys-

tem is adiabatic and that dT0/dz = 0, is

∇ · u = 0
Du

Dt
= − 1

ρm
∇p̃+

ρ̃

ρm
g + ν∇2u

Dρ̃

Dt
= 0 (3.23)



68CHAPTER 3. INCOMPRESSIBILITY AND THE BOUSSINESQ APPROXIMATION

where the thermal energy equation was re-cast in terms of ρ̃ using the perturbed
equation of state. Because these last equation can also be viewed as an equation
for conservation of mass when ∇ · u = 0, the following argument is often used
to justify the Boussinesq approximation:

“ An incompressible fluid has ∇ · u = 0, and conservation of mass has
Dρ/Dt = −ρ∇·u hence in the Boussinesq approximation we must have Dρ/Dt =
0.”

This argument is wrong, however, and the proper derivation above shows
that Dρ̃/Dt = 0 is only true in certain conditions, and is derived strictly from
the thermal energy equation rather than mass conservation. The mass conser-
vation equation in the Boussinesq approximation is ∇ · u = 0.

3.4 The Boussinesq approximation for gases

The derivation of the Boussinesq approximation for gases follows the same steps,
but with a few notable differences.

Starting with the equation of state, subtracting the background from p =
RρT , we have

p̃ = R(T̃ ρ̄+ ρ̃T̄ + T̃ ρ̃) (3.24)

Keeping only the lowest-order terms in ε yields

p̃ = R(T̃ ρm + ρ̃Tm)→ p̃

pm
=

T̃

Tm
+

ρ̃

ρm
(3.25)

Although this has not been explicitly written out, the RHS clearly looks like it
should be of order ε.

Next, we study the momentum equation. Subtracting the background state
hydrostatic equilibrium, it now reads

(ρm + ∆ρ0(ρ̂0 + ρ̂))
U2

H

D̂û

D̂t̂
= − 1

H
∇̂p̃−∆ρ0ρ̂gez +

U

H2
µ∇̂2û (3.26)

where p̃ again was left “as is”. By contrast with the case of liquids, however,
p̃ is not independent of T̃ and ρ̃ – but instead is related to them through the
perturbed equation of state.

As before, on the LHS we neglect the terms of order ε. To study the RHS,
first note that from hydrostatic equilibrium we have

1

pm

∣∣∣∣dp0

dz

∣∣∣∣ =
1

dp
=
ρm
pm

g =
γ

c2
g (3.27)

where dp is the pressure scaleheight, and where we have defined c to be the
speed of sound associated with the mean thermodynamical state:

c2 = γRTm (3.28)
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where γ is the adiabatic index (see Chapter 2). Hence

g =
c2

γdp
(3.29)

Substituting this into the momentum equation together with the linearized equa-
tion of state, keeping only the lowest-order terms in ε, and simplifying somewhat,
we have

D̂û

D̂t̂
= − 1

M2γ
∇̂
[

∆T0

Tm
T̂ +

∆ρ0

ρm
ρ̂

]
− ∆ρ0

ρm

1

M2γ

H

dp
ρ̂ez +

ν

HU
∇̂2û (3.30)

where M ≡ U/c is defined to be the Mach number of the flow.
To model systems which are not just decaying viscously, either the pressure

term or the buoyancy term must be sufficiently large. We see that the pressure
term contains the quantity ε/M2γ, while the buoyancy term contains the quan-
tity (H/dp)ε/M

2γ. The relative importance of the two terms depends somewhat
on the size of H/dp.

Since we are considering a perfect gas, dp is usually of the same order as dρ
and dT (within a factor of order unity). Hence H/dp is in fact of order ε. The
buoyancy term then appears to be much smaller than the pressure term. While
this may be ok for some types of flows (as discussed in the previous section
for liquids), it cannot be true if we are studying phenomena that intrinsically
depend on the buoyancy (such as convection, internal gravity waves, etc). The
solution to this conundrum is to realize that the pressure term does not have to
be of order ε/M2γ: if we require, in addition, that

∆T0

Tm
T̂ ' −∆ρ0

ρm
→ T̃

Tm
' − ρ̃

ρm
(3.31)

to order H/dp, that is, if we neglect the pressure perturbations entirely in the
equation of state, then the buoyancy term and the pressure term are of the same
order, (H/dp)ε/M

2γ. The requirement that the forcing be of order one (to have
any effect on the acceleration of the fluid) sets the Mach number to be of order
ε – in other words, the Boussinesq approximation will only be valid for flows
whose velocity is much smaller than the sound speed.

Finally, let’s look at the thermal energy equation. We start with the complete
dimensional equation:

ρcv
DT

Dt
= −p∇ · u +∇ · (k∇T ) (3.32)

where we have neglected the viscous heating term (on the grounds that it is
negligible), and assumed the internal heating/cooling is zero. Note that we
have to keep the term p∇ · u on the RHS, because ∇ · u is of order ε, which is
the same order as the term in the LHS. We have:

p∇ · u ' −pm
ρm

(
∂

∂t
+ u · ∇

)
(ρ̄(z) + ρ̃) (3.33)
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Using the background equation of state to replace ρ̄, and (3.31) to eliminate ρ̃,
we have

p∇ · u ' pm
ρm

(
∂

∂t
+ u · ∇

)(
ρm

T̃

Tm
− p̄

RT̄

)
(3.34)

Since ∆p0 ∼ εpm, we can rewrite the RHS keeping only the lowest-order terms
in ε:

p∇ · u '
(
∂

∂t
+ u · ∇

)(
pm

T0(z) + T̃

Tm
− p0(z)

)
=
pm
Tm

D

Dt
(T0(z) + T̃ )− wdp0

dz

(3.35)
Combining this with the thermal energy equation, keeping only the lowest-

order terms in ε, and using hydrostatic equilibrium to replace dpo/dz, we get

ρmcp
D

Dt
(T0(z) + T̃ ) + wgρm = ∇ · (k∇T̃ ) (3.36)

where we introduced the constant

cp = cv +R = cv +
pm

ρmTm
(3.37)

This constant is the specific heat at constant pressure. It can be shown using
thermodynamics that the adiabatic index γ is also the ratio of specific heats:

γ =
cp
cv

(3.38)

The thermal energy equation can then be rewriten as

DT̃

Dt
+ w

(
dT0

dz
+

g

cp

)
=

1

ρmcp
∇ · (k∇T̃ ) (3.39)

And finally, note that −g/cp is the adiabatic temperature gradient, that is, the
temperature gradient that would be present if the background was adiabatically
stratified. To see this, note that we have in general

1

Tm

dT0

dz
=

1

pm

dp0

dz
− 1

ρm

dρ0

dz
(3.40)

from the linearized equation of state. If the background is adiabatically strati-
fied, then

1

ρm

dρad

dz
=

1

γpm

dpad

dz
(3.41)

so

1

Tm

dTad

dz
= (1− γ−1)

1

pm

dpad

dz
= −

(
1− cv

cp

)
ρm
pm

g = −R
cp

ρm
pm

g (3.42)

Hence the adiabatic temperature gradient is dTad/dz = −g/cp.
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To summarize, the Boussinesq equations for a gas are:

∇ · u = 0
Du

Dt
= − 1

ρm
∇p̃+

ρ̃

ρm
g + ν∇2u

T̃

Tm
= − ρ̃

ρm

DT̃

Dt
+ w

(
dT0

dz
− dTad

dz

)
= ∇ ·

(
k

ρmcp
∇T̃
)

(3.43)

The quantity k/ρcp is the thermal diffusivity and is often noted as κT . Note that

the perturbed equation of state can also be cast as ρ̃ = −αρmT̃ exactly as in the
case of liquids. We see that the only difference with the case of a liquid is in the
thermal energy equation, which contains the additional adiabatic temperature
gradient, and where cv was replaced by cp.

3.5 Discussion and things to remember

In this Chapter, we learned about the Boussinesq approximation, which provides
a means of studying the dynamics of fluids without necessarily having to resolve
sound waves (the latter are effectively filtered out). We saw that it is valid
whenever the domain considered is much shorter than a density or temperature
scaleheight (whichever is smaller). The Boussinesq equations for liquids and
gases are essentially similar, except for the thermal energy equation.

Other equations exist that also filter out sound waves, and that are valid in a
broader class of problems, notably those where the domain is much larger than
a density/temperature scaleheight. These are based on the requirement that the
velocity of the fluid be much smaller than the sound speed. Among those are
the anelastic approximation and the pseudo-incompressible approximation. For
more information on the latter, as well as another, possibly much more elegant
derivation of the Boussinesq approximation, see the paper by Vasil et al. 2013.


