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2.5 Sound waves in an inhomogeneous, time-
dependent medium

So far, we have only dealt with cases where c was constant. This, however, is
usually not true in most realistic systems. In what follows, we now apply the
wave-packet approximation to study waves in a medium with non-constant c.
Before we start, we first have to re-derive the governing equation in this more
general case.

2.5.1 Derivation of the governing equation

Consider (for instance) a planetary or stellar atmosphere where the temperature
profile is known, and given by T̄ (z, t) (where z denotes the vertical coordinate
– here, we assume for simplicity that there are no horizontal gradients of tem-
perature). Then, the pressure and density of that background state are related
both by the equation of state and by hydrostatic equilibrium:

p̄(z, t) = p(ρ̄(z, t), T̄ (z, t))

∂p̄

∂z
= −ρ̄(z, t)g (2.1)

Finally, if we want to assume that the background state does not undergo any
fluid motions, then we also need to assume that ∂ρ̄/∂t = 0. One could, in
principle, solve these equations although for our purposes we do not need to do
so right now – we merely need to know solutions exist and govern the background
state. As before, we next consider perturbations to this background state, such
that p(x, y, z, t) = p̄(z, t)+ p̃(x, y, z, t) (and similarly for T and ρ). Plugging this
into the governing system of compressible equations, linearizing, and neglecting
the effect of gravity on the perturbations themselves we have

∂ρ̃

∂t
+∇ · (ρ̄ũ) = 0

ρ̄
∂ũ

∂t
= −∇p̃ (2.2)

so following the same steps as before we have

∂2ρ̃

∂t2
= − ∂

∂t
∇ · (ρ̄ũ) = ∇2p̃ (2.3)

As discussed at the beginning of this chapter, in order to relate ρ̃ to p̃,
one usually has to make further assumptions. Here we will assume that the
perturbations are adiabatic, so

∂p̃

∂t
= c2s

∂ρ̃

∂t
(2.4)

However, we now allow cs (simply called c hereafter) to vary slowly with time
and space. This then implies

∂

∂t

(
1

c2
∂p̃

∂t

)
= ∇2p̃ (2.5)
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We see that, if c only depends (slowly) on space, then we can take it out of
the time-derivative and put it in the RHS to recover exactly the standard wave
equation. However, if c depends (slowly) on time, then we cannot do this, and
must keep c within the time derivative as is.

2.5.2 The wave packet equations

In general, the wave equation with non-constant c does not have simple analyt-
ical solutions. For example, d’Alembert’s solution does not apply to the infinite
problem, and sines and cosines are no longer eigenmodes of the finite problem
in Cartesian coordinates.

However, if the function c varies slowly with position and time, as we have
assumed here, we can go quite far by considering as before approximate solu-
tions in the form of wave packets. This idea is essentially the same as using the
WKB approximation, cf. AMS212B. Let’s work through the same steps as in the
previous section, but this time without assuming that c is constant. First, con-
struct the wave packet, p̃ = Aeiθ, and define the frequency and wavenumber as
in the homogeneous case. Plugging this into the wave equation, we successively
have

∂p̃

∂t
= −iωAeiθ + ε

∂A

∂T
eiθ (2.6)

and

∂

∂t

(
1

c2
∂p̃

∂t

)
= −iε ∂ω

∂T

A

c2
eiθ − 2iε

ω

c2
∂A

∂T
eiθ − iωA ∂

∂T

(
1

c2

)
eiθ − ω2

c2
Aeiθ (2.7)

Meanwhile, ∇2p̃ was already calculated in the previous section. To the lowest
order, we then recover the dispersion relation as expected, ω2 = c2k2 (where c
now depends both on X and T ) and to the next order we have

∂A

∂T
+
c2

ω
k · ∇εA = −Ac

2

2ω

[
∂

∂T

( ω
c2

)
+∇ε · k

]
(2.8)

As before, we then use the dispersion relation to find an alternative, more
intuitive set of governing equations for k and ω “following the wave packet”.
Note that this time, the dispersion relation depends on time both explicitly, via
c(X, T ), and implicitly, via k. Let’s rewrite it as

ω = Ω(k(X, T ),X, T ) (2.9)

Hence

∂ω

∂T
=

(
∂Ω

∂T

)
k

+
∂Ω

∂kx

∂kx
∂T

+
∂Ω

∂ky

∂ky
∂T

+
∂Ω

∂kz

∂kz
∂T

=

(
∂Ω

∂T

)
k
− ∂Ω

∂kx

∂ω

∂X
− ∂Ω

∂ky

∂ω

∂Y
− ∂Ω

∂kz

∂ω

∂Z
(2.10)
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This implies that if we define a group velocity vector as

cg = (∂Ω/∂kx, ∂Ω/∂ky, ∂Ω/∂kz) (2.11)

we can rewrite the evolution equation for ω much more concisely as

∂ω

∂T
+ cg · ∇εω =

(
∂Ω

∂T

)
k

(2.12)

Note that, for the dispersion relation specific to the wave equation, we can write

ω2 = c2k · k→ cg =
c2

ω
k (2.13)

so the same group velocity does, in fact, appear in the equation for the amplitude
of the wave packet (2.8) – this is of course not a coincidence.

Similarly, we can work on the evolution of k. For simplicity, let’s just con-
sider the x−component of the k vector (the other components are treated ex-

actly the same way). Starting from ∂k
∂T = −∇εω we have

∂kx
∂T

= − ∂ω
∂X

= −
(
∂Ω

∂X

)
k
− ∂Ω

∂kx

∂kx
∂X
− ∂Ω

∂ky

∂ky
∂X
− ∂Ω

∂kz

∂kz
∂X

(2.14)

As before, we use the fact that ∇× k = 0 (see previous lecture) to rewrite this
as

∂kx
∂T

= −
(
∂Ω

∂X

)
k
− ∂Ω

∂kx

∂kx
∂X
− ∂Ω

∂ky

∂kx
∂Y
− ∂Ω

∂kz

∂kx
∂Z

(2.15)

so that this can be written more concisely as

∂kx
∂T

+ cg · ∇εkx = −
(
∂Ω

∂X

)
k

(2.16)

and similarly for the other components. We therefore have

∂k

∂T
+ cg · ∇εk = − (∇εΩ)k (2.17)

These three equations show that

• Both A, k and ω are advected around by the group velocity vector which
can be constructed from the gradient of the dispersion relation in wavenum-
ber space as in equation (2.11). The characteristics of these equations are
all the same, and form the ray paths of the waves.

• If that dispersion relation is independent of time, then ω is conserved along
a ray path (see Equation (2.12)).

• If the dispersion relation is independent of space entirely, then k is con-
served along a ray path (see Equation (2.17)).

• If the dispersion relation is independent of one particular space-variable,
then the projection of k on that variable is invariant along the ray path.

Although we have proved these statements in the context of a wave equation,
they are in fact more general, and can be demonstrated to hold for all linear
waves!
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2.6 Application: Sound waves in stars & planets

Let’s now apply our findings to study the propagation of sound waves just below
the surface of a star, or that of a giant gaseous planet 1. Suppose the sound-speed
profile is c(Z), where Z = 0 at the surface, and Z increases downward into the
stellar/planetary interior. Let’s ignore curvature for the moment, and simply
model the near-surface layer using Cartesian coordinates. Suppose for instance
that c increases linearly with Z as c(Z) = c0 + c1Z (this is not completely ad-
hoc, as it could for example be the first few terms of a Taylor expansion for
small Z). Both c0 and c1 are positive, for the sound speed to increase with
depth below the surface.

Suppose that some phenomenon (a near-surface convective eddy, or material
falling onto the surface, such as a comet, or a planet, etc..) located at (X =
0, Z = 0) causes the excitation of a wave packet at the surface. For simplicity,
we will assume that this perturbation is only 2-dimensional, though the same
procedure can be carried out without much more difficulty in 3D. The expression
for the pressure perturbation associated with the wave packet is

p̃(X, t) = A(X, T ) exp(iθ(x, t)) (2.18)

At time t = 0, we assume that the wave packet is localized (e.g. a δ−function,
or a narrow Gaussian), centered on (0, 0). It has a uniform frequency ω0 and a
uniform wavevector k0 = (kx0, kz0). Note that in practice, there may be many
waves excited, all with different k0; if that’s the case then we would simply
add them together. Figure 2.1 shows the model setup, as well as representative
waves emitted.

Since the wave packet is propagating downward, towards increasing Z, the
z−component of the group velocity must be positive. We can select the x−component
of that velocity to be positive or negative arbitrarily, to select a left-going wave
or a right-going wave. Let’s take the positive case for instance. In that case, we
are interested in the positive branch of the dispersion relation, and

ω = c(Z)
√
k2x + k2z (2.19)

The group velocity is the gradient of this equation with respect to kx and kz, so

cg = c(Z)

(
kx√
k2x + k2z

,
kz√
k2x + k2z

)
=
c(Z)

|k|
k (2.20)

1In fact, this example can also apply to sound waves in a closed chamber on Earth, whose
sound speed varies significantly with height, etc..
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Figure 2.1: Examples of ray paths of waves emitted by a comet falling on the
surface of a star or planet. Two representatives ray paths are shown. The initial
wave vector k0,i of the two waves has the same amplitude but k01 has a smaller
kx0 and a larger kz0 while k02 has a larger kx0 and a smaller kz0. In both cases,
the ray paths are arcs of circles, and the centers of these circles are given in the
text.

The equations for the evolution of the wave packet are

ω(X, T )2 = c(Z)2|k(X, T )|2

∂ω

∂T
+ cg · ∇εω = 0

∂kx
∂T

+ cg · ∇εkx = 0

∂kz
∂T

+ cg · ∇εkz = − dc
dZ
|k|

∂A

∂T
+ cg · ∇εA = − A

2kc(Z)

[
∂ω

∂T
+ c(Z)2∇ε · k

]
(2.21)

We see that

• ω is invariant along a ray path

• kx is invariant along a ray path, but kz isn’t.

We can first solve these equations for ω, kx and kz. The characteristic equa-
tions (which ultimately determine the ray paths) are the same for all quantities
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in the wave packet, and are given by:

∂T

∂τ
= 1

∂X

∂τ
= cg · eX =

kx√
k2x + k2z

∂Z

∂τ
= cg · eZ =

kz√
k2x + k2z

(2.22)

The quantities ω, kx, kz then satisfy, along a ray path

∂ω

∂τ
= 0

∂kx
∂τ

= 0

∂kz
∂τ

= − dc
dZ
|k| (2.23)

The equation for A is not needed here, though could be solved as well if we want
to.

Because ω and kx are both conserved, ω = ω0 and kx = kx0 along a ray
path. So we can directly find kz (along a ray path) from the dispersion relation
without actually using the characteristic equations:

ω0 = c(Z)
√
k2x0 + k2z → kz =

√
ω2
0

c2(Z)
− k2x0 (2.24)

where we have selected the positive root for downward propagation. Note that
one gets the same solution by solving simultaneously the equation Z(τ) and
kz(τ), and eliminating τ between the two... but that’s a lot harder!

This immediately shows that the wave cannot propagate downward indefi-
nitely, unless kx0 = 0; the lowest possible point of excursion is given by Z such
that

c2(Zmin) =
ω2
0

k2x0
→ Zmin =

ω0

kx0
− c0
c1

(2.25)

This point is called the lower turning point of the wave. Note how Zmin de-
creases as kx0 increases – waves with larger horizontal wavenumber (smaller
wavelengths) do not propagate as deeply as waves with smaller wavenumber
(longer wavelengths). This is clearly seen in Figure 2.1.

To determine the shape of the ray path, we construct

dZ

dX
=

∂Z
∂τ
∂X
∂τ

=
kz
kx

=

√
ω2

0

c2(Z) − k
2
x0

kx0
=

√
ω2
0

k2x0c
2(Z)

− 1 (2.26)

which can be solved to get:

(c0 + c1Z)2 + c21(X +K)2 =
ω2
0

k2x0
(2.27)
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where K is an arbitrary integration constant. For Z = 0 and X = 0 at t = 0
then we need K to satisfy

c20 + c21K
2 =

ω2
0

k2x0
(2.28)

so that

K = ± 1

c1

√
ω2
0

k2x0
− c20 (2.29)

The ray path equation can be then rewritten as(
Z +

c0
c1

)2

+ (X +K)
2

=
ω2
0

c21k
2
x0

(2.30)

We therefore see that the ray paths are circular, with radius ω0/c1kx0, and cen-
tered vertically around the point (−K,−c0/c1). The arbitrariness in the ± sign
for K can finally be resolved by noting that we are seeking waves propagating
to the right, so that K has to be negative. We see that the center of this circle
is actually above the surface of the star, at Z = −c0/c1 (which is negative since
both c0 and c1 are positive). The height of the center is independent of the
initial conditions, but its X position is.

Once the packet reaches the lower turning point, it is refracted. The wave is
evanescent beyond Zmin, and must turn over. kz changes sign, though it is easy
to show that this does not change the equation for the ray path. It is worth
noting that a refraction, however, does change the phase of the wave. To under-
stand where this may come from, first note that the wave-packet solution is not
really well-defined near the lower turning point. Indeed, one of the fundamental
assumptions to the wave packet approximation is that the rate of variation of
the background should be much slower than the wavelength of the oscillation.
At the lower turning point, however, kz tends to 0, so the vertical wavelength
tends to infinity; the wave packet approximation breaks down.

To model the refraction correctly, one should therefore drop the wave-packet
approximation in the limit Z → Zmin, find out what happens to the wave beyond
Zmin, and then match two solutions for Z above and below the turning point
asymptotically to one another. The mathematical proof is fairly complex (see
AMS212B for the tools needed to do it), but leads to the conclusion that the
refracted wave is very much the same as the incoming wave, except for a phase
shift. Interestingly, in the case of a refraction the phase shift is not −π, but
−π/2 instead!

After the refraction, the wave packet returns to the surface; if the surface
could be modeled as a boundary where p = 0, the wave would then be reflected
there2, then go back down, etc... Hence, the trajectory of the wave looks like

2This assumption is, in fact, not true in a real stellar photosphere since the latter is not a
solid boundary. Instead, it turns out that the sound speed increases again very rapidly just
above the photosphere, and there is another turning point – this time, an upper turning point.
Hence the wave is also refracted near the photosphere, which leads to another −π/2 phase
shift instead of a −π phase shift. Since the derivative of c is very large, however, the radius of
curvature at the upper turning point is very small, so the ray path looks very much like one
for a reflected wave.
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Figure 2.2: Examples of ray paths of waves in a star or planets, after several
bounces/refractions. Image from Wikipedia.

the one shown in Figure 2.2 after several bounces near the surface and at the
lower turning point.

This is not purely theoretical: for example, a rather spectacular collision
between comet Shoemaker-Levy and Jupiter occurred in July 1994, and some of
the images taken after impact at various wavelengths really show the position
of the first bounce of the wave after impact.

This shows that a varying sound speed can create an acoustic cavity as well,
whose depth depends on the horizontal wavenumber k0x and frequency ω0 of the
wave. Because of this, stars have a discrete spectrum of oscillation frequencies,
just like a musical instrument. This quantized spectrum can be reconstructed
using similar arguments to the ones we used for waves in a 1D acoustic cavity.
The frequencies are usually related to the sound travel time along a ray path –
so by measuring these frequencies, it is often possible to reconstruct the sound
speed profile below the surface of a star (cf. Helio/Asteroseismology).

2.7 Energy conservation

2.7.1 Energy conservation for the wave equation

In most systems that do no have explicit dissipation (viscosity, thermal dissipa-
tion, etc.), the energy is conserved. To see the principle of energy conservation
at work, let’s first see how the kinetic energy, ρ̄ũ2/2, evolves with time. Dotting
the momentum equation with ũ, we have

ρ̄
∂

∂t

(
ũ2

2

)
= −ũ · ∇p̃ = −∇ · (p̃ũ) + p̃∇ · ũ (2.31)
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Figure 2.3: Images of Jupiter at different wavelengths, after impact with comet
Shoemaker-Levy. The ring around the impact site shows the position of the first
bounce of the main wave packet.



58

This last term can be rewritten using the mass conservation equation as

∇ · ũ =
1

ρ̄

[
−∂ρ̃
∂t
− ũ · ∇ρ̄

]
(2.32)

so that

ρ̄
∂

∂t

(
ũ2

2

)
= −∇ · (p̃ũ) +

p̃

ρ̄

[
− 1

c2
∂p̃

∂t
− ũ · ∇ρ̄

]
(2.33)

This can then be combined into

ρ̄
∂

∂t

(
ũ2

2

)
+

1

ρ̄c2
∂

∂t

(
p̃2

2

)
= −1

ρ̄
∇ · (ρ̄p̃ũ) (2.34)

And finally

ρ̄
∂

∂t

(
ũ2

2

)
+

1

ρ̄c2
∂

∂t

(
p̃2

2

)
= −1

ρ̄
∇ · (ρ̄p̃ũ) (2.35)

Recall that we had to assume that ρ̄ is independent of time and only varies
slowly with space, so

∂

∂t

(
ρ̄
ũ2

2

)
+

1

c2
∂

∂t

(
p̃2

2ρ̄

)
= −∇ · (p̃ũ) (2.36)

and finally,
∂

∂t

(
ρ̄
ũ2

2
+

p̃2

2ρ̄c2

)
= −∇ · (p̃ũ) +

p̃2

2ρ̄

∂

∂t

(
1

c2

)
(2.37)

Now consider a particular fixed region of space D. Integrating this equation
over D and recasting the first term on the RHS using the divergence theorem
implies that

∂ED
∂t

= −
∫
∂D

p̃ũ · n̂d2x+

∫
D

p̃2

2ρ̄

∂

∂t

(
1

c2

)
d3x (2.38)

where

ED =

∫
D

(
ρ̄

2
ũ2 +

p̃2

2ρ̄c2

)
d3x (2.39)

is the total energy of the wave inside the domain D, which has 2 terms : a kinetic
energy, and a compressional energy. If the integral on the RHS is taken over a
periodic domain, or in a closed container where ũ = p̃ = 0 on the boundary, then
the total energy is conserved unless there are temporal changes in the background
state. If c is independent of time, then

∂ED
∂t

= 0 (2.40)

This tells us that, once a wave has been excited, if it is trapped in a closed
container, or in a periodic domain, then its energy is conserved. In reality of
course, dissipation would slowly take place, gradually eroding the wave’s energy.
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2.7.2 Energy conservation in the wave packet equation

Let’s now go back to the wave packet amplitude equation. It is natural to hope
that it also satisfies a similar energy conservation law as the original problem.
As we can see, the energy is a function of ũ and p̃. We first need to express ũ
in terms of the wave packet solution. Since

ρ̄
∂ũ

∂t
= −∇p̃→ −iρ̄ωUeiθ = −ikAeiθ (2.41)

to the lowest order in ε, and where U would be the equivalent amplitude of a
wave packet in velocity. Multiplying each side of this equation by its complex-
conjugate, we get ρ̄2|U |2 = |A|2/c2 so that

EK = ρ̄|U |2/2 = |A|2/2ρ̄c2 = EP (2.42)

This means that the wave packet is a solution in which there is equipartition
between the kinetic and acoustic energies, and the total energy being the sum
of the two, we have

E = EK + EP =
|A|2

ρ̄c2
(2.43)

Note that here we always have to consider the norm of A squared, since A could
be a complex quantity, but the energy has to be a real quantity.

Using the wave packet amplitude equation, we can now form the energy
equation. We start by multiplying (2.8) by A∗/ρ̄c2 (where A∗ is the complex
conjugate of A), and rearranging:

1

ρ̄c2
∂|A|2

∂T
+

1

ρ̄c2
cg · ∇ε|A|2 = −|A|

2

ρ̄kc

[
∂

∂T

( ω
c2

)
+∇ε · k

]
(2.44)

Then we construct the conservation law for E = |A|2/ρ̄c2, with the intuition
that energy, like all other quantities, must travel with the group velocity. To do
this, we use the old trick of adding the same quantity on both sides, to put the
LHS in the desired form:

∂

∂T

(
|A|2

ρ̄c2

)
+∇ε ·

(
cg
|A|2

ρ̄c2

)
= −|A|

2

ρ̄kc

[
∂

∂T

( ω
c2

)
+∇ε · k

]
(2.45)

+ |A|2 ∂

∂T

(
1

ρ̄c2

)
+ |A|2∇ε ·

(
cg
ρ̄c2

)
Simplifying the RHS using the fact that ρ̄ is constant (or at least, varies even
slower than slow time or slow space), we get

∂E

∂T
+∇ε · (cgE) = −|A|

2

ρ̄

[
1

ωc2
∂ω

∂T
− k · ∇ε

(
1

kc

)]
= − |A|

2

ρ̄ωc2

[
∂ω

∂T
+ cg · ∇εω

]
(2.46)

Using the evolution equation for ω, we then get

∂E

∂T
+∇ε · (cgE) = − |A|

2

ρ̄ωc2
k
dc

dT
= −|A|

2

ρ̄c3
dc

dT
=
|A|2

2ρ̄

d

dT

(
1

c2

)
(2.47)
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Figure 2.4: Example of a ray tube.

which is exactly what one would expect from the energy conservation equation
discussed in the previous section (see Equation 2.38). This suggests that one
could have written the amplitude equation for the wave packet without doing any
calculations at all simply and directly from energy conservations considerations,
as

∂

∂T

(
|A|2

ρ̄c2

)
+∇ε ·

(
cg
|A|2

ρ̄c2

)
=
|A|2

2ρ̄

d

dT

(
1

c2

)
(2.48)

As discussed before, we see that the energy in the wave packet is conserved only
if the sound-speed is time-invariant.

2.7.3 Conservation of wave energy along ray tubes

In many cases, the temporal variation of the background sound speed is negligi-
ble in comparison with the standard wave propagation timescale. In that case,
the RHS of equation (2.47) is negligible, and we have

∂E

∂T
+∇ε · (cgE) = 0 (2.49)

Consider again ray paths of the waves. These are also streamlines of the vector
field cg, or in other words, lines that are tangent to cg at any point in space.
Now imagine a ray tube, whose surface is everywhere parallel to cg, as in the
figure below. We now consider the volume V delimited on the sides by the ray
tube, and on the ends by two cross sections C1 and C2, as shown in Figure ??.

Integrating Equation (2.49) in V, we get by the divergence theorem that

∂

∂T

∫
V
Ed3X +

∫
∂V
E(cg · n̂)d2X = 0 (2.50)

where n̂ is everywhere perpendicular to the surface of V. Since cg is everywhere
parallel to the ray tube, then the contribution from the sides vanish ad we are
left with the contributions from the flux through the areas C1 and C2:

∂

∂T

∫
V
Ed3X =

∫
C2
E(cg · n̂2)d2X +

∫
C1
E(cg · n̂1)d2X (2.51)
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C
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C
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Figure 2.5: Spherical surfaces around the spherical loudspeaker. The energy
flux through each spherical shell has to be the same.

where n̂1 is the unit outward normal to C1, and similarly for n̂2 (note that they
are usually pointing in opposite directions). This shows that energy propagates
along the ray tube without leaving through the sides.

This property is very useful if one wants to estimate the amplitude of a
steady-state wave propagating in a ray tube of varying cross section. A steady-
state implies that the LHS of the equation above is zero. This could happen
for instance if the wave is trapped, or if there is a constant total energy flux
into the tube on one side, and the same total energy flux out of the tube on the
other. Then we simply have that∫

C2
E(cg · n̂2)d2X =

∫
C1
E(cg · (−n̂1))d2X = 0 (2.52)

for any two cross sections C1 and C2. This means that the total energy flux
through any cross section of tube must be the same.

Worked example: the spherical loudspeaker

Let’s go back to the example of the spherical loudspeaker. Instead of emitting
a pulse of sound, let’s now assume it is a constant source of it. Using energy
conservation, show that |A| ∝ 1/R.

Consider any two spherical surfaces centered at the speaker (see Figure 2.5)
– by construction of the ray paths, these surfaces are perpendicular to cg, so
|cg · n̂| = cg = c. By the results obtained above, we have that, for any sphere
of radius R,

4πR2 |A(R)|2

ρ̄c
= const (2.53)

so indeed, |A| ∝ 1/R as required. This is exactly the same result as we had
found before, but this time in 3 lines of algebra!
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2.8 Conclusions of this Chapter, and things to
remember

This chapter introduced the wave packet as a universal tool for studying the
propagation of non-dispersive waves in media where the wave propagation speed
could depend slowly on time and space. Many of the results we derived also
apply to dispersive waves, as we shall see in the next Chapter.

Given a wave packet defined as

p(x, t) = A(X, T )eiθ(x,t) (2.54)

whose local frequency ω = −∂θ/∂t and local wavenumber k = ∇θ are related
through a dispersion relation ω = Ω(k;X, T ). Then

• The group speed of the packet is defined as

cg = (∂Ω/∂kx, ∂Ω/∂ky, ∂Ω/∂kz) (2.55)

• The frequency within the wave packet evolves as

∂ω

∂T
+ cg · ∇εω =

(
∂Ω

∂T

)
k

(2.56)

• The wave-vector within the wave packet evolves as

∂k

∂T
+ cg · ∇εk = − (∇εΩ)k (2.57)

• The evolution equation for the amplitude A of the wave-packet can be
derived simply by considering energy conservation, and takes the form

∂E

∂T
+∇ε · (cgE) = RHS (2.58)

where the relationship between E and |A|2, and the RHS of this equation,
both depend on the system considered. In general, however, by Noether’s
theorem, we know that this RHS is zero if the medium considered is time-
independent.


