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2.3 3D waves in a spherical cavity

Having looked at 1D examples in detail, let’s now move to the 3D case, and
consider waves in a homogeneous spherical cavity. This is not quite the case of
pressure waves in stars (where the fluid is not homogeneous), but it is one step
in the right direction. The 3D wave equation, in a spherical coordinate system
(r, θ, φ) is given by
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For simplicity, we’ll take p = 0 at r = R as boundary condition, and require
that p be bounded at r = 0.

As before we will look for basic solutions via separation of variables. Let’s
first assume separation of the spatial and temporal variables, i.e., p(r, θ, φ, t) =
a(r, θ, φ)b(t). Then,
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so, as before, since the LHS is only a function of t while the RHS is only a
function of the spatial coordinates, we can set both to a constant. And as
before, it can reasonably easily be shown that this constant must be negative
or 0, hence we write
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As always with separation of variables, we start with the spatial problem. We
separate a into r, θ and φ coordinates, as in a(r, θ, φ) = f(r)g(θ)h(φ). Then
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Multiplying the whole equation by r2 sin2 θ and rearranging it, we get

sin2 θ

f

d

dr

(
r2
df

dr

)
+

sin θ

g

d

dθ

(
sin θ

dg

dθ

)
+
ω2

c2
r2 sin2 θ = − 1

h

d2h

dφ2
(2.5)

Now the LHS is a function of r and θ only, while the RHS is a function of φ
only, so both have to be constant. Based on the fact that the solutions in φ will
have to be periodic with period 2π, we can already guess that this constant will
have to be the square of an integer number, which we call m2. Hence
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The solutions for h are therefore simply linear combinations of cos(mφ) and
sin(mφ), for each value of m selected.

Let’s now divide the remaining (r, θ) equation by sin2 θ and rearrange the
terms:
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Again, we have worked this out so the LHS is a function of r only, while the
RHS is a function of θ only, so both have to be equal to a constant. This time,
it’s not as obvious what the sign of that constant has to be, so for the moment
let’s just call it α. The θ equation is
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It is customary in working with equations in spherical coordinate systems to
introduce the new variable x = cos θ, where x varies between -1 and 1 as θ
varies between −π/2 and π/2. Then with d/dθ = − sin θd/dx, the θ equation
becomes
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In this form, it is now possible to recognize it as the equation for the Legendre
functions Pml (x) and Qml (x), as long as the constant α = l(l + 1). The Qml (x)
are singular at x = ±1, so we can rule these solutions out – but keeping the
other solutions, we have found the solution for g:

glm(θ) = Pml (cos θ) (2.10)

Note that the Legendre functions Pml (cos θ) are equal to the Legendre Polyno-
mials Pl(cos θ) for m = 0. Also, Pml (cos θ) is identically 0 if m > l, so the only
values of m allowable are m ≤ l. Finally, note that the product of g and h is a
well-know set of functions called the spherical harmonics, and usually written
Y ml (θ, φ). For convenience, it is customary to write them in complex form to
include both the sine and the cosine part of h, as in:

Y ml (θ, φ) = eimφPml (cos θ) (2.11)

The structure of the spherical harmonics is shown in Figure 2.1. For l = m = 0,
we simply have the constant function. For l = 1 and m = 0, the function is
invariant in φ and has one node in latitude at the equator. For l = 1 and
m = 1, it’s exactly the same pattern but rotated by 90◦. Note how it’s equal
to 0 at the poles, and has 2 nodes in longitude. For l = 2, m = 0, the func-
tion has 2 nodes in latitude, but is invariant in longitude. For l = 2, m = 2,
again the function is 0 at the poles, and has 4 nodes in longitude. Generally
speaking, if m = 0 the function has l nodes in latitude, while if l = m the
function is 0 at the poles, and has 2m nodes in longitude. In order words the
larger l or m, the more complex the spatial structure of the mode on the sphere.
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Figure 2.1: Spherical harmonics as a function of l and m. Image ripped from
the web. m increases to the right, with m = 0 on the first column.

Nextt, we have to solve the remaining radial equation:
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which can be rewritten as
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This actually looks very similar to a spherical Bessel equation, namely

z2f ′′ + 2zf + (z2 − l(l + 1))f = 0 (2.14)

except for the term in ω2/c2 in front of r2. In fact, we can easily get rid of it
by creating the variable z = ωr/c. Then our equation is exactly the spherical
Bessel equation, which has the solutions jl(z) and yl(z). The yl(z) solutions are
singular at z = 0, so we can discard them. We are then simply left with

f(r) = jl

(ωr
c

)
(2.15)

In order for f(r) to satisfy the boundary conditions, we need f(R) = 0. This
implies that ωR/c must be a zero of the spherical Bessel function of degree l.
If we call these zeros znl (for the n-th zero of the jl function), this sets the
eigenfrequency ω to be

ωnl =
znlc

R
(2.16)
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Figure 2.2: First few zeros of the first 4 spherical Bessel functions j0 to j3, as
well as the corresponding asymptotic approximation. As we can see, the zeros
are nearly linear functions of n and increase slowly with l. This is also equal
to ωnlR/c and therefore gives an idea of how the mode frequency changes with
both n and l.

The znl are tabulated numbers, that can easily be found in appropriate text-
books (e.g. Abramowitz & Stegun), using Mathematica/Wolfram Alpha, or in
various sites on the web. They are shown in Figure 2.2. For very large n (which
correspond to very large zeros), there is an asymptotic approximation to the
zeros that can be derived from WKB theory which states that (see Abramowitz
and Stegun equation 9.5.12):
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l

2

]
π for n� l (2.17)

In practice, this approximation is exact for l = 0, and is already quite good for n
that is not that much larger than l for l 6= 0. For each of these eigenfrequencies,
we have the corresponding eigenfunction
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Going back to the temporal equation, finally, we see that each of the eigenfre-
quencies has a corresponding temporal solution as

bnl(t) = αnl cos(ωnlt) + βnl sin(ωnlt) (2.19)

Figure 2.2 therefore also shows how ωnl = znlc/R changes with n and l in this
system.
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Putting everything together, we have the full solution as
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where the various constants can be found by fitting the initial conditions if nec-
essary. In practice, that’s rather messy so we won’t do it here.

As in the 1D case, we find that the solutions are a superposition of stand-
ing waves, whose spatial form is given by the product of the spherical Bessel
function jl(znlr/R) with the spherical harmonic Y ml (θ, φ). This time there are 3
important integer numbers that fully characterize the solution, namely n (called
the radial order), l (called the latitudinal wavenumber) and m (the longitudinal
wavenumber). The eigenfrequencies, however, only depend on n and l, showing
that there is some degeneracy (i.e. different spatial modes can have the same
eigenfrequency).

For l = 0, the only possible value of m is 0, so the corresponding spheri-
cal harmonic is simply P 0

0 (θ, φ), which is the constant function. In that case,
the corresponding spatial eigenmodes have no structure in the latitudinal and
horizontal directions, and the radial part is equal to j0(zn0r/R), which is also

j0

(zn0r
R

)
=

R

zn0r
sin
(zn0r
R

)
(2.21)

Meanwhile, the zeros zn0 are simply zn0 = nπ. These radial eigenfunctions are
shown in Figure 2.3. As for the case of the 1D wave in the tube, we see that the
fundamental mode (n = 1 here) has no nodes, the first harmonic has 1 node, the
second harmonic has 2 nodes, etc... so as before, the larger n, the more complex
the spatial structure of the mode. The eigenfrequencies of each of these radial
modes are simply ω0n = z0nc/R = nπc/R. The fundamental eigenmode has
frequency ω01 = πc/R, so the period of that mode is equal to the time it takes
for the sound to get from the surface to the center and back (as it was in the
case of the tube).

For l > 0, there is not always a simple analytical expression for the zeros or
for the radial eigenfunctions. However, for large l, we can use WKB theory to
approximate the jl(z) functions and their zeros if needed. As shown in Figure
2.2, and through asymptotic theory, the frequencies corresponding to different
n and l increase more-or-less linearly with both n and l.

Having learned about the case of pressure waves in an isothermal sphere, let’s
now look at pressure waves in a real star, the Sun. We have, thanks to helioseis-
mology, excellent data on the frequency of various pressure modes observed at
the surface of the Sun. Because we can only observe the surface, we can measure
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Figure 2.3: The first 4 radial eigenfunctions for l = m = 0.

the spatial structure of the mode in latitude and longitude, but not in radius.
Hence, it is customary to plot the mode frequency as a function of the latitu-
dinal wavenumber l – since we don’t know what n is. The results are shown in
Figure 2.4, obtained with the Michelson Doppler Imager (MDI) instrument on
board the spacecraft SOHO. We see several ridges, which each correspond to a
different radial order n. Because the Sun is rotating, the modes are not com-
pletely degenerate in m as it would be for a non-rotating star. Hence different
modes with different m have slightly different frequencies, which is why each
ridge has a significant thickness. The ridges are not really linear, which can be
attributed to the fact that the Sun is not isothermal.
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Figure 2.4: Helioseismic data on pressure waves in the Sun. The horizontal axis
shows the measured latitudinal wavenumber l, and the vertical axis shows the
measured oscillation frequency of the mode. The color shows the power in the
mode (i.e. how strong it is).
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2.4 Wave packets solutions

We will now switch gear and learn a new method of studying waves that revolves
around the use of wave-packets. Even though it looks more complicated at first
than the techniques we have learned so far, this will turn out to be a much more
versatile and powerful tool that can very easily be generalized in more than 1D,
and, much more importantly, for non-constant sound speed – which we had so
far ignored. Let’s proceed to build the components of that solution step by step.

2.4.1 Wave packets in 1D

In many more realistic cases, sound waves do not take the form of a simple
Gaussian, or a perfect sine or cosine. The pressure perturbations associated
with a person talking for instance would consist of a series of wave trains, of
different total duration, pitch (i.e frequency), and modulation of amplitude,
such as the example given in Figure 2.5.
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Figure 2.5: Example of a pressure perturbation at some position x, as a function
of time, showing both modulation of amplitude and of frequency.

Whenever this is the case, one could consider the following general approxi-
mate form of solution:

p(x, t) = A(εx, εt)eiθ(x,t) (2.22)

where eiθ(x,t) is the carrier plane wave, the function θ(x, t) is its phase (which
does not have to be equal to kx−ωt), and A(εx, εt) is its modulated amplitude.
Note how we have expressed A as a function of “slow variables” X = εx and
T = εt to imply that they vary slowly with x and t – at least, much more slowly
than the variations intrinsic to the plane wave itself1. As usual, A could be
complex, and in order to extract the true physical value of p when needed, we
shall always take its real part. In what follows, p will now be function of x, t
but also of X and T as

p(x,X; t, T ) = A(X,T )eiθ(x,t) (2.23)

1To see why X = εx (and similarly, T = εt) are slow variables, plot the functions cos(x)
and cos(X) side by side.
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Since the phase of the wave is now defined as the more general function
θ(x, t) instead of the function kx − ωt that is specific to plane monochromatic
waves, we no longer have an obvious explicit definition for k and ω. However,
let’s remember that

• The period of a wave is defined by how long one needs to wait before it is
in the same phase again (modulo ±2π)

• The wavelength of a wave is defined by how far one has to move to see it
in the same phase again (modulo ±2π)

In other words, if the period of the wave is 2π/ω, then

θ

(
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)
= θ (x, t)± 2π (2.24)

Taylor expanding the first term, we then get

2π

ω

∂θ

∂t
= ±2π (2.25)

so that

ω = ±∂θ
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It now remains to be seen which of the + or − sign is consistent with the plane
wave definition. We see that the plane wave would have

ω = −∂θ
∂t

(2.27)

and therefore choose the − sign solution by analogy. Similarly, we can construct
the wavenumber k to be

k =
∂θ

∂x
(2.28)

which is also consistent with the plane wave definition. We then have a rela-
tionship between k and ω, namely

∂k

∂t
+
∂ω

∂x
= 0 (2.29)

Finally, note that unless we actually have a plane wave with θ = kx−ωt, k and ω
are generally functions of x and t themselves. In the wave-packet approximation,
however, we shall require that they only be slowly varying functions of x and
t, meaning that they are functions of X and T only. As a result ∂k/∂t =
(∂k/∂T )(∂T/∂t) = ε∂k/∂T and similarly for ∂ω/∂x. The equation above then
becomes, to first order in ε,

∂k

∂T
+
∂ω

∂X
= 0 (2.30)

Let’s now plug the wave-packet solution into the simple 1D Cartesian wave
equation with constant sound speed ∂ttp = c2∂xxp. To do so, we need to evaluate
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partial derivatives of p with respect to t and x, remembering that there is a t-
dependence in T , and an x−dependence in X. We have:
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using the definition of ω, and, up to first order in ε only,
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and, up to first order in ε only,
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Plugging these back in the wave equation, and equating orders, we get:

• To lowest order in ε we recover the dispersion relation for sound waves,

ω2 = k2c2 (2.35)

• To the next order, we have:
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In order words, the evolution of the wave packet can be studied by solving the
coupled system of equations
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all of which only depend on the slow-variables X and T . In essence, we have
filtered out all of the rapid oscillatory behavior of the waves, keeping only the
more manageable slow variations! Solving these new equations is often a lot
easier than solving the primitive ones.
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However, we can do even better. There is another way of re-writing these
equations that leads to a much more intuitive interpretation of their solutions.
Let’s first consider the evolution of ω. Taking the slow-time derivative of the
dispersion relation, we have
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using (2.30). We can therefore re-write this as
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depending on the branch (±) of the dispersion relation selected. In other words,
the frequency function is advected at velocity ±c without change of form.

Next, using the spatial derivative of the dispersion relation, we have
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which becomes
∂k
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which again implies that the wavenumber is advected at velocity ±c without
change of form.

Finally, combining (2.39) and (2.41) with (2.37), we find that the amplitude
equation also simplifies, in such a way that
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To summarize, an alternative way of looking at the evolution of the wave
packet is to solve simultaneously the much more intuitive set of equations
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where the choice of ± simply depends on the branch of the dispersion relation
we have chosen (ω = ±ck). Note that the first two equations are equivalent, so
one only needs to solve one or the other. The solutions to these equations are
simply A(X,T ) = A(X ∓ cT ), ω(X,T ) = ω(X ∓ cT ) and k(X,T ) = k(X ∓ cT ).

As written we see that all the properties of the wave packet are advected
without change of form at the same velocity, ±c. This velocity is the group
velocity discussed earlier, and describes the propagation of the packet rather
than the phase within the packet. Note how much of the phase information is
lost from the wave packet description: this is the approximation made and the
price to pay for using this method.
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Worked example

What is the exact solution of the right-ward propagating wave for the initial
condition given by p(x, 0) = cos(x) exp(−x2/200) with pt(x, 0) = 0 ? What is
the approximate wave-packet solution? Compare the two.

Finding the exact solution is pretty trivial since we can just use the right-ward
propagating component of d’Alembert’s solution for instance:

p(x, t) = p0(x− ct) = cos(x− ct) exp(−(x− ct)2/200) (2.44)

In the wave-packet solution, we have to identify the carrier wave and the slow
amplitude from the initial conditions. In the way it is written, separating the
two is fairly obvious: the carrier wave at time t = 0 is cos(x) = <(eiθ(x,0)),
which has a constant wavenumber, while the slowly varying amplitude function
can be written as, e.g.

A(X, 0) = exp(−X2/2) (2.45)

with X = x/10 (Note that there is some arbitrariness on how to pick the scale
separation ε between the fast and slow scales, but this arbitrariness does not
matter here).

In the wave-packet approximation, both the wavenumber function k(X,T )
and the amplitude function A(X,T ) are advected with velocity c to the right.
Since the wavenumber function is constant and equal to 1 at t = 0, then it
will remain constant for all time T and space X (since c is constant), and the
same will then be true for ω = ck = c. We can then get θ(x, t) by integrating
∂θ/∂t = −ω = −c and ∂θ/∂x = k = 1, to get θ = x− ct. The time-dependent
carrier wave is then <(eiθ(x,t)) = cos(x − ct). Finally, the advection of the
amplitude function gives exp(−(X − cT )2/2) = exp(−(x − ct)2/200). As a
result, the approximate solution of the wave packet equations is

p(x, t) = cos(x− ct) exp(−(x− ct)2/200) (2.46)

which is exacly the same as d’Alembert’s solution. This method is obviously
completely overkill for this fairly simplistic problem, but it does work.

2.4.2 Generalization of the wave packet to multiple di-
mensions

As we now see, the concept of a wave packet is trivially generalized to multiple
dimensions, which makes it a very useful tool! In more than 1D, the wave
equation as derived earlier becomes

∂2p

∂t2
= c2∇2p (2.47)

where we are still assuming that c is constant, and plane wave solutions are of
the kind

p(x, t) = p̂ exp(ik · x− iωt) (2.48)
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where x = (x, y, z) and k = (kx, ky, kz) are now three-dimensional.

We create a wave packet exactly the same way as before, assuming that p can be
written as the plane monochromatic wave times the slowly varying amplitude:

p(x, t) = A(X, T ) exp (iθ(x, t)) (2.49)

where X = (X,Y, Z) = (εx, εy, εz) is a three-dimensional vector and θ is the
phase function. For the same reasons as discussed in the 1D case, we can define
the local frequency and wavevector of the wave to be

ω = −∂θ
∂t

and k = ∇θ (2.50)

or in other words
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This then implies that
∂k

∂t
+∇ω = 0 (2.52)

and therefore that
∂k

∂T
+∇εω = 0 (2.53)

where ∇ε means that the spatial operator only acts on the slow position vari-
ables.

Plugging the wave packet solution into the wave equation, and proceeding
exactly as before, we now find that
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ω
k · ∇εω =

∂ω
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where cg = c2

ω k = ck/k. However, the derivation of the evolution equation for
k is less trivial. Indeed, let’s start with the x component of 2.53, which is

∂kx
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+
∂ω
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= 0 (2.55)

We can then take the spatial derivative of the dispersion relation to get

2ω
∂ω

∂X
= 2c2

(
kx
∂kx
∂X

+ ky
∂ky
∂X

+ kz
∂kz
∂X

)
(2.56)

which now depends on ky and kz!. But here we can use the fact that k = ∇θ
to note that ∇× k = 0, so

∂ky
∂Z

=
∂kz
∂Y

∂kx
∂Z

=
∂kz
∂X

∂kx
∂Y

=
∂ky
∂X

(2.57)
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The last two equations more specifically can be used to transform what we had
into

ω
∂ω

∂X
= c2

(
kx
∂kx
∂X

+ ky
∂kx
∂Y

+ kz
∂kx
∂Z

)
= c2k · ∇εkx (2.58)

so we eventually get
∂kx
∂T

+
c2

ω
k · ∇εkx = 0 (2.59)

which can be generalized for all components of k to get

∂k

∂T
+
c2

ω
k · ∇εk =

∂k

∂T
+ cg · ∇εk = 0 (2.60)

Note that while we have derived these equations using a Cartesian coordinate
system, they are now generally written in vector form and are therefore valid in
any coordinate system!

Equations (2.54) and (2.63) show that the group velocity cg is in the direc-
tion of k, and since k = ∇θ, we see that the waves travel in a direction that is
perpendicular to lines of constant phase. While this seems to be pretty obvious
for compression waves, we will see that it is also not always the case – some
dispersive waves have group velocities that are not necessarily perpendicular to
their constant-phase surfaces. Figure 2.6 shows examples of constant phase sur-
faces in various types of configurations and corresponding selected wave-vectors,
for non-dispersive waves.

Figure 2.6: Lines of constant θ for sample 2D pressure wave fields, and selected
wavenumbers. The wavenumbers are always perpendicular to the lines of con-
stant θ, and the group velocity is parallel to k. Hence the wave is propagating
to the right in the first case and radially outward in the second case. In the
third case it’s a little more complicated.
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Finally, the amplitude equation becomes

∂A

∂T
+
c2

ω
k · ∇εA = − A

2ck

[
∂ω

∂T
+ c2∇ε · k

]
(2.61)

This can be rewritten in a clearer form as:

∂A

∂T
+ cg · ∇εA = − A

2ck

[
∂ω

∂T
+∇ε · (ωcg)

]
(2.62)

Expanding the divergence, and using (2.54), we then get

∂A

∂T
+ cg · ∇εA = −Ac

2
∇ε ·

(
k

k

)
(2.63)

To summarize, in 3D the wave packet equations are:

∂k

∂T
+ cg · ∇εk = 0

∂ω

∂T
+ cg · ∇εω = 0

∂A

∂T
+ cg · ∇εA = −Ac

2
∇ε ·

(
k

k

)
(2.64)

This shows that k and ω are advected without change of form or amplitude by
the velocity field cg. The equation for the amplitude function A, on the other
hand, now has a non-zero RHS (the fact that we had a zero RHS in the 1D case
simply stems from the fact that ∇ε · (k/k) ≡ 0 in 1D). The physical interpreta-
tion of this RHS is that the convergence or divergence of the wavenumber field
can focus or de-focus the waves. In that case the total amplitude increases or
decreases correspondingly (see the example below of the spherical loudspeaker
for instance).

2.4.3 Ray Tracing

The set of 3 equations for the evolution of the frequency, wavevector and wave
packet amplitude given in (2.54) and (2.63) shows that all three quantities evolve
on the same characteristics (see Method of Characteristics, AMS 212A), which
are called the ray paths. To find the equations for these ray paths, we look at
the evolution of k (we cannot start with ω and A since these equations depend
on k via cg). Component by component, we have that

∂ki
∂T

+ cg · ∇εki = 0 (2.65)
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where ki is either kx, ky or kz. Using the method of characteristics, we then
have

∂T

∂τ
= 1

∂X

∂τ
= (cg)x = c

kx
k

,
∂Y

∂τ
= (cg)y = c

ky
k

,
∂Z

∂τ
= (cg)z = c

kz
k

∂ki
∂τ

= 0 (2.66)

where τ is the “time” variable along a characteristic (not to be mixed up with
the τ used in Chapter 1).

We first see that ki is conserved along a ray path. Since all the components of
k are, then so is k. This implies that the right-hand-sides of all these characteris-
tic equations are constant, so that the ratios ∂X/∂Y = kx/ky, ∂X/∂Z = kx/kz
and ∂Y/∂Z = ky/kz along a ray path are all constant – in other words, the ray
path is a straight line until it hits a boundary (see below). Furthermore, it is
easy to show that the ray path is parallel to k (or equivalently, to cg), so that
its direction is given by the value k has at time t = 0.

Next, by analogy, we see that ω is also constant along a ray path, (since it
has the same characteristics, so ∂ω/∂τ = 0). Finally, we have that ∂A/∂τ =
−(Ac/2)∇ · (k/k), which implies that the amplitude of a sound wave increases
if the ray paths converge, and decreases if the ray paths diverge. We will revisit
the amplitude equation shortly, but in the meantime, note how the distribution
of k at t = 0 entirely determines the ray paths, which then entirely determines
the full solution k, ω and A everywhere along them!

Worked example: the spherical loudspeaker

Consider sound waves being generated by a perfectly spherical loudspeaker of ra-
dius R0 vibrating radially. The sound waves generated have a given constant fre-
quency ω. Suppose the speaker at r = R0 emits a wave packet whose amplitude
is a Gaussian function of the slow time T , e.g. p(R0, t) = cos(ωt) exp(−T 2/2).
What is the solution p(R, t) far from the speaker?

To begin with, we must figure out the ray paths of the waves. Being only
given the frequency as a function of time at r = R0, we don’t a priori know
what the wavenumber field k is. However, we know that k must be perpen-
dicular to the phase surfaces, and since the loudspeaker is vibrating radially, it
is creating sound waves that only depend on r. Hence the phase θ varies only
with r, so k has to be perpendicular to surfaces of constant r. This shows that
k must be radial: k = ker where k = ω/c.

Based on ray tracing, we know from the initial conditions selected that the
rays are straight lines, and so they remain purely radial throughout space. We
also know that ω and k are conserved along a ray: hence k = ker = (ω/c)er
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everywhere in space. This implies

∂A

∂T
+ cer · ∇εA = −Ac

2
∇ε · er (2.67)

By spherical symmetry, we also expect that the amplitude will only depend on
the radius R away from the center of the sphere, and time. It is therefore more
appropriate to study this equation in a spherical coordinate system than in the
Cartesian one used until now. We now merely need to re-express them in a
spherical coordinate system:

∂A

∂T
+ c

∂A

∂R
= −Ac

R
(2.68)

This equation can be solved using the method of characteristics.
We first have to create the “initial condition curve”. We have that, on

R = R0 (the radius of the loudspeaker), A(R0, T ) = Ap(T ) where Ap(T ) =
exp(−T 2/2) is the slow-time variation of the sound pulse. This can be parametrized
as R0(s) = R0, T0(s) = s, and A0(s) = Ap(s). The characteristic equations are

∂T

∂τ
= 1 ,

∂R

∂τ
= c ,

∂A

∂τ
= −Ac

R
(2.69)

The first of these equations has solution T = τ + T0(s) = τ + s. The second
has solution R = cτ + R0(s) = cτ + R0. The last equation can then be cast in
terms of τ only as

∂A

∂τ
= − A

(R0/c) + τ
(2.70)

This implies that

lnA = − ln((R0/c) + τ) +K(s) (2.71)

where K(s) is an integration function. To satisfy the initial conditions, we have
to have

K = lnA0(s) + ln((R0/c)) (2.72)

so that

A(s, τ) =
Ap(s)

1 + τc/R0
=

e−s
2/2

1 + τc/R0
(2.73)

To transform this solution back into (R, T ) space, we have to write s and τ in
terms of R and T . We have

τ =
R−R0

c
and s = T − τ = T − R−R0

c
(2.74)

so

A(R, T ) =
R0

R
Ap

(
T − R−R0

c

)
=
R0

R
exp

[
1

2

(
T − R−R0

c

)2
]

(2.75)
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Figure 2.7: Function A(R, T ) of the amplitude of the sound emitted by a spher-
ical loudspeaker of radius R0 = 1, assuming c = 1.

With see that the Gaussian pulse propagates radially with velocity c without
change of width, but its amplitude decreases away from the speaker as A ∝ R−1.
This is shown in Figure 2.7.

Note also that by suitably taking the limit of an infinitely short pulse, and an
infinitely small sphere, we are not far from getting the Green’s function solution
for sound waves in an infinite homogeneous domain, which can then be used
to reconstruct solutions for any distribution of sound-sources and any initial
condition (see AMS212A for detail).

2.4.4 Reflection near a wall

The only problem left is to address what happens when a ray hits a wall. To
do so, let’s look close to the wall, in a small region where the wave is well-
approximated by a plane wave. We use the same method as we did in 1D,
looking at the solution near the wall as the sum of an incident and a reflected
wave. Let kI and ωI be the wavenumber and frequency of the incident wave,
and kR and ωR those of the reflected wave. Suppose the wall is at x = 0. We
have

pI(x, t) = AIe
ikI ·x−iωIt and pR(x, t) = ARe

ikR·x−iωRt (2.76)

There are two possible cases. Those with boundary conditions n̂·∇p = 0 (where
the derivative of the pressure perpendicular to the wall must be 0) or p = 0,
where the pressure itself must be 0 at the wall. Here we will look at the p = 0
case, and the other case is left as homework.
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If, at the wall (x = 0), we require that p = 0 then

p(x, t) = pI(0, y, z, t)+pR(0, y, z, , t) = AIe
ikIyy+ik

I
zz−iωIt+ARe

ikRy y+ik
R
z z−iωRt = 0

(2.77)
The only way to enforce this for any y, z, and t is to have ω, ky and kz be the
same for the incident and reflected waves, and AR = −AI . The first condition
implies that the modulus of k must be invariant (since ω is, and ω only depends
on the modulus of k). This in turn implies that kRx = −kIx. The second condition
can be recast as a change of phase by a factor π, since −1 = eiπ. In summary,
we have that

pR(x, t) = AIe
−ikIxx+ik

I
yy+ik

I
zz−iωIt−iπ (2.78)

The ray path of the reflected ray is shown in Figure 2.8

kx
I

kx
R = −kx

I

ky
I

ky
R = ky

I

x

y

k I

kR

Figure 2.8: Incident and reflected ray paths near a wall at x = 0, in the case
where p = 0 on the wall.

This process can be easily generalized to other geometries, at least when the
boundary is smooth, to show that (1) the frequency and amplitude remains un-
changed, (2) the component of k parallel to the boundary remains unchanged,
(3) the component of k perpendicular to the boundary changes sign and (4) the
phase is shifted by a factor of π. What happens at corners is a lot harder, and
will be ignored here.

Many examples of application of ray tracing exist, and it is one of the fun-
damental tools of the theory for acoustic design. Interesting ones involve, for
instance, wave guides and sound focussing designs. Also note that it is possi-
ble to derive quantization conditions from ray tracing in multiple dimension
in a manner analogous to what we did in 1D, to recover the global eigen-
modes/eigenfrequencies of oscillation of an acoustic cavity. This is one the
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techniques used to determine the frequencies of oscillations of stars, for in-
stance. This field holds many interesting mathematical tricks/theorems, some
quite fundamental such as the Einstein-Brillouin-Keller quantization, which is
equally useful for studying pressure waves in stars and in quantum mechanics
to calculate energy levels in atoms/molecules! It has also opened the door to
another concept called “quantum chaos”, first glimpsed in the context of ray
tracing by Einstein himself. Finally, remember that all we have done so far
is valid, not just for sound waves, but for all non-dispersive waves, such as
electromagnetic waves (i.e. light) for example.


