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ABSTRACT

This paper describes efficient schemes for the computation
of a large number of differentely scaled/oriented filtered ver-
sions of an image. Previous work has generalized the well-
known steerable/scalable (“deformable”) filter bank struc-
ture by imposing X-Y separability on the basis filters. This
systems, designed by an iterative projections technique, was
shown to achieve substantial reduction of the computational
cost.

To reduce the memory requirement, we adopt a multi-
rate implementation. The resulting structure, however, is
not shift-invariant - it gives raise to “aliasing”. We intro-
duce a design criterion for multirate deformable structures
that jointly controls the approximation error and the shift-
variance.

1. INTRODUCTION

Elementary visual structures such as lines, edges, texture,
motion, are powerful “cues” to understand the structure of
the outside world from its visual appearance (the image),
and their identification is instrumental for almost any visual
task. Classical image processing problems (enhancement,
denoising) may also be approached successfully using ele-
mentary descriptors such as edges and textures. Image com-
pression schemes using sub-bands coders, oriented along
the preferred texture orientation in the image, proved ad-
vantageous in terms of visual rendition. Velocity may be
interpreted as orientation in spatio—temporal domain, and
motion-compensated spatio-temporal filters may be used suc-
cesfully for prediction, interpolation and smoothing as well
as for coding.

Regardless of the specific descriptor of interest, most
techniques start processing the image (or image sequence)
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with a family of linear filters tuned at a wide range of orien-

tations and scales of resolution. The multiscale/multiorientation

image decomposition is then analyzed to detect features (usu-
ally, via a non-linear stage) and to measure their attributes
(orientation, dominant scale, velocity).

While orthogonal structures have been intensively stud-
ied in the context of wavelet theory, several algorithms are
designed to operate on redundant (or overcomplete) image
decompositions. A drawback of this approach is that the
computational cost to realize the analysis filter bank may
easily become too high for practical use. In order to meet
prescribed implementation constraints, thus, the use of fast
filtering is mandatory.

This paper describes efficient schemes for the computa-
tion of a large number of multiscale/multioriented filtered
versions of an image, pushing forward previous results by
Freeman and Adelson [1] and Perona [2].

To reduce the computational weight of multiscale/ mul-
tiorientation filter banks, one may exploit the correlation
among the filters in a two-stage scheme usually named “steer-
able” or “scalable” [1, 3] (or more generally, “deformable” [2]).
Such systems may be shown [4] to be a particular instance
of the "multistage separable” structure introduced by Tre-
itel and Shanks [5]. In a previous paper [6], we general-
ized the deformable filter bank structure by imposing X-Y
separability on the basis filters. Such an implementation re-
duces effectively the computational weight associated with
deformable filter banks. An iterative projections technique
was used for the least-squares design of such structures.

While deformable filter banks are efficient in terms of
computational cost, they require substantial extra memory
to store intermediate frames. To reduce the overall mem-
ory requirements, we propose to use a multirate implemen-
tation: for those filters in the filter bank that are narrow-
banded, only a subsampled version of the intermediate fil-
tered frames needs to be stored.

In our implementation, we embed the filter bank in an
analysis/system separable pyramidal scheme. The system
is designed using a novel least-squares procedure for multi-
rate FIR filters [7] introduced by Manduchi and Perona [8].
This technique, based on the time domain, relies on the
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definition of a suitable “multirate” approximation criterion,
which jointly controls the approximation error and the shift-
variance. The resulting system achieves the goal of joint
reduction of computational weight and of memory require-
ment.

2. MULTIRATE DEFORMABLE FILTER BANKS

Imposing X-Y separability on the basis filters of a deformable
filter bank, as described in [6], can reduce the overall com-
putational weight, at the price of supplementary memory
for storing the intermediate filtered images. Frame memo-
ries are expensive, and it is desirable to reduce the memory
requirement while enjoying reduced computational cost.

A solution is derived observing that some of the ba-
sis filters may be narrow-banded. The filtered signals are
thus highly correlated, and may be subsampled before being
stored (therefore using less memory). These reduced rate
versions are then interpolated and linearly recombined for
each scale and orientation. Although this may seem compu-
tationally expensive at a first sight, we can show that with a
suitable choice of the interpolator filters, the overall imple-
mentation results efficient both in terms of memory and of
computational cost.

The idea of multirate implementation of digital filters
dates back to the 1975 paper of Rabiner and Crochiere [7].
In the context of computer vision, Burt [9] designed multi-
rate filters shaped as gaussians or as laplacian of gaussians.
More recently, Manduchi and Perona [8] proposed a least~
squares design procedure for multirate FIR filters. This last
approach differs from the previous ones in the sense that the
shift-variance (consequent to the sampling rate alteration) is
explicitly kept into account.

The multirate systems we consider here are not perfect
reconstruction, and therefore suffer from aliasing, meaning
that they are not shift-invariant. Shift-invariance is consid-
ered a fundamental property of signal processing systems;
on the other side, a system that deviates “slightly” from
shift-invariance may still be suitable to most applications.
Typical effects of aliasing are staircase patterns in corre-
spondence of brightness edges, and low—{requency fringes
(Moire patterns) in correspondence of textured areas. Both
phenomena are visually quite noticeable. However, if our
task is the analysis of the visual structures in an image,
aliasing may be tolerated as a signal-dependent noise, qual-
itatively not too different from other forms of “noise” that
are traditionally considered.

How do we quantify shift-variance”, and how can we

Jointly control the approximation error and the shift-invariance

of our filters? Manduchi and Perona [8] regarded shift-
variance as data-dependent noise, which can therefore be
quantified. By studying the behavior of the multirate sys-
tem in the time domain, one can derive an error functional

that keeps into account both the approximation error and
the aliasing” noise. The multirate filter may be optimized
using an iterative procedure.

In the case of separable deformable filter banks, we adopt
the multirate implementation for those 1-D basis filters that
are suitably narrow-banded. A simple design strategy is the
a posteriori multirate approximation: first, a separable de-
formable filter bank is designed; then, each narrow-banded
1-D filter is transformed into a multirate structure using the
technique of [8].

However, a more clever approach optimizes for the whole
multirate system having a priori constrained the multirate
structure of a number of kernels. The algorithm described in
this section achieves such a goal, jointly optimizing for the
multirate 1-D filters and for the recombination functions.

We use a pyramidal octave—band separable structure for
the steerable/scalable filter bank, represented in Figure 2.
Although this is not the most general scheme for a multi-
rate realization, we claim a number of design and imple-
mentation advantages deriving from the pyramidal decom-
position. The basis filters may be embedded in (and opti-
mized for) any separable pyramidal structure, although the
interpolation (synthesis) filters need to be ”short” in order to
achieve computational savings. The proposed implementa-
tion uses simple raised-cosine analysis and synthesis filters.

It is important to realize that this structure is different
from the “steerable pyramid” of Simoncelli et al. [3]. In
fact, the input and the output of our system are at the same
rate; the pyramid is merely used as an efficient computa-
tional scheme.

2.1. Pyramidal implementation of deformable filter banks

As mentioned earlier, we use multirate implementation for
those 1-D filters of the X-Y separable deformable filter bank
which are suitably band-limited. The computational burden
of the basis filtering is reduced, although it is likely that, in
order to compensate for the approximation error introduced
by the multirate implementation, the number of branches in
the filter bank will have to be increased. -In fact, important
advantages of the multirate implementation are:

1. Reduction of memory requirements (because only the
decimated version of the basis filters’ outputs are stored);

2. Reduction of the computational burden for the recom-
bination (because multiplications by the recombina-
tion coefficients are performed on the lowest rate sig-
nals).

The basic multirate structure is represented in Figure 1.
The overall pyramidal structure is shown in Figure 2.

In particular, we set the decimation filter equal to the
interpolator, and we keep them constant for all branches in
the overall deformable structure. This last constraint could
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be easily removed, however we believe that our choice is
justified by the following reasons:

1. We have noticed in our experiments that optimizing
for the decimator and the interpolator independently
(imposing the same kernel’s length), we obtain two
identical filters (up to a scale factor). Although we
cannot provide a rigorous theoretical explanation of
such this phenomenon, we have found no counterex-
ample so far;

2. The proposed structure is typical of pyramidal imple-
mentations like the “gaussian pyramid” [11];

3. The optimization procedure is much faster this way,
as only one kernel per branch has to be optimized.

Any filter suitable for pyramidal decomposition is a can-
didate for h(z), so long as it can be implemented efficien-
tely. This is a fundamental requirement because we store the
basis filters’ outputs in their decimated versions, for mem-
ory parsimony. For each scale and orientation, we interpo-
late back these signals before recombination®.

In our experiments, we have used a simple 3-taps raised-
cosine filter h(z) = [a, 1, a] for the decimator/interpolator
(the optimization of h(z) is discussed in [4].) To interpolate
by a factor 2 using polyphase implementation, we only need
0.5 multiplications and 0.5 sums per output sample.

To appreciate the reduction of the computational bur-
den for the recombination from the basis filters’ outputs,
consider a 1-D deformable filter bank where all R basis
filters are implemented in a 2-multirate scheme. For each
scale/orientation, we need 0.5 (for interpolation) plus 0.5R
(for recombination) multiplications per input sample. A
comparison with the non-multirate case (where the recon-
struction requires R multiplications sums per input sample
per scale/orientation) shows that, even if the multirate im-
plementation may require to increase the filter bank’s rank
to compensate for larger approximation error, it makes for
the substantial reduction of the computational cost associ-
ated with the recombination.

Our approach requires to first select those 1-D filters that
will be realized in a multirate fashion, and then to set the
corresponding multirate indices {M (r)}. A simple design
strategy would optimize the filter bank for a non-multirate
implementation, and then approximate each basis kernel in
a multirate scheme under the guidelines of [8]. Clearly, op-
timizing the overall system for given multirate structure and
for given kernels’ sizes represents a better solution. In [4],

L A different strategy consists in storing the interpolated versions of the
basis filters’ outputs. While no memory reduction is achieved this way, the
computational burden is relieved from the repeated interpolation (although
now the recombination is performed on the full rate signals). This solu-
tion may be suitable when memory constitutes no problem, and larger size
interpolators are used.

we describe the extension to the algorithm of [6] to achieve
such a goal.

We are left with the problem of the a priori selection
of the multirate order and kernel’s size for each basis fil-
ter. Here is a simple heuristic procedure (we consider the
scalable 1-D case for simplicity’s sake):

¢ Design the non-multirate filter bank for given rank R
and common kernels’ size N;

o For each basis filter u, (z):

— For pyramid depth ¢ from O to some limit /:

* Compute the multirate approximations with
inner kernel’s size equal to N;

* Compute the conventional filter length N, (r, 7)
of the optimized inner kernel,

* Compute again the multirate approximations
with inner kernel’s size equal to N.(, ¢);

~ Retain the largest pyramid depth i(r) that gives
multirate approximation error below some fixed
threshold.

Then, we optimize the overall pyramidal deformable fil-
ter bank where we set the depth and the kernel’s length of
the r-th basis filter equal to #(r) and N.(r,i(r)}) respec-
tively. The design algorithm, based on an iterative proce-
dure, is decribed in [4], where we also present experimental
results.

3. CONCLUSION

We have described a technique for the efficient implemen-

* tation of deformable filter banks, based on the use of sepa-

rable basis filters and multirate implementation. The filter
bank is embedded in a pyramidal structure, designed under
a novel multirate error criterion that jointly minimizes the
approximation error and the aliasing. The computational
weight and memory requirement are dramatically reduced
with respect to the common steerable/scalable decomposi-
tion based on SVD.

We have used the least-squares criterion, which allowed
us to attack the design problem in a rigorous formal setting.
The choice of other design criteria, which may suit more ef-
fectively the image analysis tasks at hand, remains an open

problem.

The Matlab software to implement the filter banks de-
scribed in this paper may be found at
http://www.vision.caltech.edu/manduchi/def.tar.Z.
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Figure 1: Basic multirate structure used in the pyramidal
scheme.
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