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Two-Dimensional IFIR Structures Using
Generalized Factorizable Filters

Roberto Manduchi

Abstract—In this paper we extend the idea of interpolated
FIR (IFIR) filters to the two-dimensional (2-D) case. IFIR filters
make for the reduction of the computational weight, in the one-
dimensional (1-D) case as well as in the 2-D case. In the 1-D
case, the justification to such a performance advantage rests
upon the relationship between filter order, transition bandwidth
and minimax errors for equiripple linear-phase filters. Even
though no similar relation is known for minimax optimal mul-
tidimensional filters, a qualitatively parallel behavior is shared
by a class of suboptimal filters (“Generalized Factorizable”)
recently introduced by Chen and Vaidyanathan, for which an

efficientimplementation exists. In our scheme, we use GeneralizedN of non-null coefficients of its impulse respoAsélence
Factorizable filters for both the stages of the IFIR structure. An .

. 0 . 0 g 1 .
interesting problem peculiar to the multidimensional case is the 'Af 1N( ) is the I(_angth ofh )(”)’ andON( ) IS lthe Iength of
choice of the sublattice which represents the definition support h(n), approximately Niprr = N© + N OPS’s are
of the first-stage (shaping) filter. We present a strategy to choose required to implement the IFIR structure (in spite of the fact
(given the spectral support of the desired frequency response) the that the length of the overall impulse resporig® = A1) (n)
optimal sublattice, and to design the second-stage (interpolator) is NO 4 [, (N(l) — 1)> Nypr if L>1 and NS 2).

filter i t hi I I tational weight. - .
lter in order to achieve low overall computational weig The minimum length,, of an FIR filter 2(n) to meet

Fig. 1. A 1-D IFIR filter with L = 3: frequency responses &f(!)(z3) (the
shaping filter) and of(®)(z) (the interpolator).

Index Terms—Multidimensional filters, sampling lattices. some prescribed specifics is, for certain classes of filters (e.g.,
equiripple with narrow passband and transition band), larger
I. INTRODUCTION than the lengthNigg relative to a suitable IFIR structure

satisfying the same specifications. Hence, IFIR filters allow
for computational savings in such cases. However, the number
of memory cells required for the implementation of the IFIR
HE IDEA idea of interpolated finite impulse responsgirycture isN(® 4L (N(l)—l)—l,which is typically slightly
(IFIR) filters has been introduced by Neuet al. [16]. |arger thanN,, — 1 (the number of memory cells required to
In its simplest form, an IFIR structure is an FIR filter whosgealize h(n)).
transfer function can be written as An interesting aspect of the IFIR filter idea is the connection
N with the theory of multistage implementation of interpo-
Hirir(z) = HO () HV (1) (1) Jators and decimators [6], [7]. One can easily show that
the interpolation or decimation using an IFIR filter can be
directly implemented with the multistage (multirate) scheme
of Crochiere and Rabiner. The two structures are formally
gquivalent: the theory developed for the multistage sampling

1 ina fi 0 i
(hM(n), the 1shap|ng fiter, and A(%)(n), the interpolator g, ve conversion [6], [7] can be used to design IFIR filters,
filter), with A1)(n) # 0 only if n is a multiple of L (then and vice versa

paor), With f : )
h(n) = M) (Ln)). The interpolator removes the undesired | o literature, the design of IFIR filters approximating

spectrall repetitions of the shaping filter (see Fig..l). ideal low-pass or band-pass frequency response in a minimax
I.F.IR filters are interesting because they can pe mplemgn@&se has been considered [16], [19]. The impulse response of
efficiently. The number of elementary operations (mUIt'pl'én IFIR filter can be regarded to as the interpolated version of a

cations or sums) per input sample (called OPS) required 4@, imated” one. Because the impulse response of a selective
implement an FIR filter is approximately equal to the numbey, 4 o timal FIR filter is typically highly correlated, it is
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A. Background

where H(©)(z) and H)(z) are the transfer functions of two
FIR filters 2(®(n) and A(V(n) and L is some integer. In
other words, an IFIR filter is the cascade of two FIR filter
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passband and stopband frequencigsand f,, passband and
stopband ripple$, andé,) for small ripplesé, andé, [12],
[11]:

—10 log(6,65) — 13
fs - fp '

From relation (2) we have that, for sufficiently largé,
the transition bandwidtlifs — f,) is approximately inversely
proportional toN (for fixed products,és).

In the original simple design technique (proposed, for

multistage interpolation-decimation schemes, in [6], and for ] o o
IFIR filters in [16]) the shapina filter and the interpolato Fig. 2. A 2-D IFIR filter: passband curve of the shaping filter (thin line) and
! ping p bt the interpolator (thick line). The interpolator cancels the undesired spectral

are designed independently of each other. The amount refetitions of the shaping filter.
the passband and of the stopband ripples of the overall

filter depends on the relative positions of the oscillatiorB. Problem Statement
of the frequency responses &f(n) and A (n), which
are unknown in general. Hence, only upper bounds for t

N x

(@)

The purpose of this paper is to provide a framework to
iEi%sign 2-D IFIR filters, for a certain class of frequency

resulting 6, and &, are predictable. 15" and (" are the
passband and stopband ripples of the shaping fiIter,éé(Hd
and 6§0) those of the interpolator, from (1) one has that

8y < 61 + 6 + 6600 ~ 51 4 6 ©)
8, < max(8M), 6 + V6 ~ max(6(M,6().  (4)

response shapes widely used in video technology. For the sake
of simplicity, only 2-D domains will be studied in this paper.
The results can be extended to higher dimensions without
major problems.

Let A be the lattice of definition of the filter. The simplest
IFIR scheme is composed by the cascade of a shaping filter,
whose coefficient are not null only on a sublattice (L times

Such worst-case relations may be used for the choice l8fs dense thah), and of an interpolator. As in the 1-D
the specifics of the shaping filter and of the interpolator, &2se, the purpose of the interpolator is to cancel the undesired

achieve desired maximum values &f and ¢6,, as in [6]. If

spectral repetitions of the shaping filter (see Fig. 2).

optimal minimax filters are used, the required filter orders may The following issues must be taken care of in fifeD case:

be obtained using the relations described in [12], [11], and1)
[18]. Note that, although in their original work [16] Neuwt

al. suggested the use of a simple first-order or second-order
interpolator, higher order interpolators may be used profitably,
as in [19].

Several improvements to this simple design procedure have
been proposed. Crochiere and Rabiner early realized that
adopting multiple stopband (instead of single stopband) in-
terpolators, provides fairly significant filter order reduction
[8]. Such an idea was generalized by Sadivet al. [19] to
obtain equiripple behavior of the overall IFIR filter frequency
response. They proposed a procedure to iteratively design
RO(n) and h(V)(n) using the Remez exchange algorithm.
Their method enables to design optimal (in a minimax sense)
IFIR filters; however, it is not clear how to find a multidimen-
sional version of such a technique.

The theory of multidimensionali{ -D) multistage sampling
structure conversion has been first proposed by Ansari and
Lee [1] and by Chen and Vaidyanathan [4], and then devel-
oped to some extent by Manducht al. [15]. Also in the
multidimensional case, the theory of the multistage sampling
structure conversion and of IFIR filters are equivalent, and we
will deal only with IFIR filters hereinafter. While in [1] and in
[4] the necessary conditions (in terms of sampling lattices and
spectral support determination) for a multistage scheme—IFIR
structure are stated, and in [15] a simple design example is
given, no serious attempt to produce efficient two-dimensional
(2-D) IFIR filters defined on a given sampling lattice has been
proposed in the literature.

2)

M-D sampling lattices admit more than just one sublat-
tice for a given decimation ratio [9], [5]. Each sublattice
induces a different geometry of the spectral repetitions
of the shaping filter. In this work, we show that, given
the desired frequency response mask, certain sublattices
make for the easy interpolation of the samples of the
shaping filter, while other ones are unsuitable. In our
algorithm, all feasible sublattices of definition of the
shaping filter are tested. Note that the “feasible” sub-
lattices (i.e., such that the the repetitions of the spectral
support of the shaping filter do not overlap) are in a finite
number. In fact, increasing the subsampling ratio, the
density of spectral repetitions increases; corresponding
to some “critical” subsampling ratio, spectral overlap
cannot be avoided.

The frequency response of awW-D filter cannot be
easily characterized as in the 1-D case; in other words,
a filter's passband or stopband region can exhibit any
shape (while in the case of low-pass 1-D, they are
bound to be segments). Devising a general technique
for the IFIR system design seems an overwhelming
task. Fortunately, for a large variety of applications,
only certain subclasses are of interest. For example,
frequency responses with passband in the shape of a
parallelogram (typically a diamond) are suitable for the
sampling structure conversion of video signals [9], [20],
[15], as well as for many other applications. We will
concentrate in this work on such a class of spectral
masks.
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We design the shaping filter and the interpolator separatedglf-contained, some nonstandard notions regarding multidi-
in the spirit of the early work of Neuvet al. [16]. Among mensional sampling lattices are reported in Appendix A. In
the variety of 2-D filter design techniques available in thAppendix B we describe a computational geometry algorithm
literature [10], we have chosen the one recently propostmidesign the interpolator's spectral mask.
by Chen and Vaidyanathan in [2], [4], [3], and studied later We conclude this Introduction with the nomenclature used
by Manduchi [14]. We will call such filters “Generalizedthroughout the paper.

Factorizable” (GF) [14]. GF filters are designed starting from R, Z
two 1-D filters, taking the tensor product of their impulse o
responses, subsampling it on a suitable sublatticeg?ofind

finally reordering the samples on the desired definition lattice.

The main advantages of GF filters are as follows.

1) They “naturally” provide spectral supports in the shape
of parallelograms.

2) The design procedure is very fast (the computational
burden is due to the design of two 1-D filters) and
simple, lending itself to use in automatic design systems
(CAD). .

3) They admit an efficient “generalized factorizable” im-
plementation, which can reduce effectively the compu- «
tational weight.

4) Itis possible to control the size and some characteristics
of the impulse response. R(w)

In addition, GF filters exhibit the interesting property that ap-
proximate (worst case) relations can be found among the filter
parameters of interest (filter size, transition region, passbandd\B
and stopband ripples). Exploiting such relations it is possible

to predict lower bounds on the performance attainable by 2-DLAT(C)
IFIR filters. A

A key point in the 2-D IFIR design is the design of the *
interpolator. While the spectral support of the shaping filter
is constrained by the shape of the desired overall frequency
responseD(f), the interpolatorH(? (f) is only required to
be unitary on the passband region B{ f), and vanishing
on the undesired spectral repetitions of the shaping filter. The®
criterion for the choice of the interpolator’'s spectral mask is
the minimization of the computational weight. It turns out
that, in general, several feasible solutions can be devised. We
introduce a computational geometry algorithm to derive all the *
“optimal” spectral masks for the interpolator.

In the experimental section, we consider both the nonfac-OPS
torizable and the “generalized factorizable” implementation LDFL(A)
of the filters. In this way, we provide a reasonable estimate
of the system’s performance when filters other than GF areDFS(A)
employed. The results show that, in the nonfactorizable case,
improvements in terms of computational weight, comparable
to the 1-D case, are achievable, depending on the shape of the I1.

Set of real, integer numbers.

We denote vectors by lower case boldface letters
and matrices by upper case boldface letters.
Their entries are named after the following

example:
(k)
A1
(5)

where symbol ¥’ means vector/matrix trans-
position.

AT = (AHT,

Identity matrix.

Par(V) (where V (vilv2| - Jvar))
the parallelepiped centered at the origin
Mo, -1 < a; <1,

Parallelepiped centered at the origin with edges
pairwise parallel to the axegu: |o;| < |u;|} =
Par(diag(uy, w2, -, unr))

Difference between setd and B (i.e., the set

of elements of4 that do not belong td3).

Lattice with basisC.

Dual of latticeA = LAT(C™1).

We denote a signah(-) defined on anM-
dimensional latticeA = LAT(C) with h(a)
(wherea is assumed to belong td) or with
h(Cn) (Wheren € ZM). The two notations are
interchanged liberally.

We use term “filter” meaning the filter's impulse
response (denoted by lower case letter) and
its frequency response (denoted by upper case
letters).

Conventional filter size= the number of filter
coefficients not forced to zero.

Elementary operation per input sample.

Least dense factorizable lattice containing lattice
A.

Densest factorizable sublattice contained in lat-
tice A.

A

Ao

a? (a1, ag)T;A 2 (ay|az) Aoy

GENERALIZED FACTORIZABLE FILTERS

passband and of the stopband regions. Interestingly enoughn recent papers [2]-{4], Chen and Vaidyanathan introduced
the situation is not quite as simple using the “generalizedclass ofi/-D filters, which are designed starting fralf 1-

factorizable” implementation. It is shown that, depending ab low-pass

prototypes. The resulting frequency response has

the geometry of the decimation lattice used in the shapipgssband in the shape of a parallelogram. Althoughian
filter’s design (which, in turn, depends on the shape of th® filter designed this way is not factorizable, its polyphase
desired spectral support), the use of an IFIR structure mayaggmponents are “generalized factorizable”, in the sense that

may not reduce the overall computational weight.

they can be written as the tensor productf 1-D filters

The paper is organized as follows. Section Il briefly reviewsriented along suitable directions.
the theory of GF filters. Section Il introduces our 2-D IFIR Chen and Vaidyanathan’s algorithm is actually the only
design procedure. Section IV shows the experimental examp{apwn technique to desigGeneralized FactorizabldGF)
and Section V has the conclusions. In order to make the pafitters [14]. GF filters admit a “generalized factorizable” imple-
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Fig. 3. Left: spectral mask of the filter in the example of Section Il. Solid line: passband curve. Dashed line: stopband curve. Right: decimasion latti
LAT(A) (dots) andLAT(AH) (circles).

mentation. IfV; is the length of theth 1-D filter used in the
design algorithm, only=2 N; OPS’s are required to realize
the GF filter using such an implementation. On the other side,
if the direct form realization is adopted, the number of OPS’s
is equal to the “conventional size” of th&l-D filter, i.e., to
the number samples of its impulse response not constrained
to zero. The conventional filter size is approximately equal to
.(H?il NZ)/| det(A)], Wh_ereA 'S th.e de.CImatlc.m matrix used Fig. 4. Example of “corner region” of a diamond-shaped spectral mask.
in the design, as explained later in this section. Solid line: passband curve. Dashed line: stopband curve.

In the following, we briefly summarize some important

notions relative to GF filters, which are instrumental to our

T . . .
theory. More details, as well as the proofs, can be found Wereren(I; C) is the least positive integer such that
[2]-[4], [14]. den(P* C)P* C is integral, andD; is the greatest common

divisor of the entries of the-th row of A. Note thatA is
integral.

Now let f,, = D;/den(PTC). It is easy to prove that, with
this choice ofA and{f,, }, relation (10) is satisfied.

A. Chen and Vaidyanathan’s Design Algorithm
Consider a sampling latticA = LAT(C). Let

M In practice, we will assume that the passband and stopband
Par(P) = {Z aip;,—1 < a; < 1} (6) regions of theM-D filter are shaped like parallelograms
i=1 with pairwise parallel edge®ar(P,) and Par(P;), where

be a parallelepiped (representing the desired passband regibh);= @P’p for somea > 1, and will use zero-phase minimax
characterized by matri® = (p, || - - |p,, ). We assume that low-pass FIR filters{q;(n)} [14].

P has only rational entries.

The core of Chen and Vaidyanathan’s algorithm can Bers: ¢ = I (ie, A = Z7), w1

summarized as follows. Le{q(n),q2(n), -+, qum(n)} be
ideal 1-D filters with frequency responsés(f) such that
. — 17 |f| S fPi
)= {0, T <1f1 < 05 7
The factorizable filter
M
h(n) = <H Qi(”i)> | det(A)| (8)
i=1

has spectral support iRR(f,), where f, = (fp,, fp.
-+, fpu ). The filter

h(Cn) = h(An) 9)

obtained subsampling(n) on LAT(A) and reordering the
samples orLAT(C), has spectral support i@~ A"R(f,).

As an example, consider the following design parame-
(1/20,1/40)T vy
(=1/20,1/40)T, 3/2 (see Fig. 3). Using Chen and
Vaidyanathan’s algorithm, we obtain the sampling matrix

=% )

and the passband frequencies of the 1-D filtgrs = f,,
1/40 (the stopband frequencies beiffig = «f,, and fs,

afpz)

B. Minimax Relationships

It is possible to derive worst-case relations between the
product of the passband and of the stopband ripples of the fre-
guency response and some measure of the “transition region”,
for a fixed conventional size of the GF filter [14]. In general,
one can expect that, for a fixed conventional filter size, the

Our purpose is to find a matrid and passband frequenciegroduct of the passband and of the stopband ripples increases

{fp;} such that

CTA"R(f,) = Par(P). (10)
Let
A=P'C den(PTC) = DA,
D =diag(Dy, Ds,--+,Dyy) (11)

as the area of the “corner region4 depicted in Fig. 4
decreases. This result, which is reminescent of relation (2)
among the minimax parameters of an optimal 1-D filter, should
not surprise: a 2-D GF filter is obtained subsampling the tensor
product of two 1-D filters, and it inherits their properties.
In particular, the “corner region” area is proportional to the
product of the transition bands of the two 1-D filters.
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~

—1 H%z) H{"%z) H{P(z,) H @) —

Fig. 5. The cascade of two 1-D IFIR filters (an and z2, respectively) is equivalent to a 2-D IFIR filter.

C. Impulse Response Decimation on a sublatticeA; = LAT(CH), designed using the first

Suppose one is given a GF filtér(a) defined onA = Procedure of point 3 above [14]. Ldtag(Ry, Ry), R, Ry >0
LAT(C) with spectral support approximatinBar(P). Let De abasis OLDFL(LAT(AH)) (it can be shown that, using
A, = LAT(CH) be a sublattice ofA, and assume that Chenand Vaidyanathan's techniqué)I'L(LAT(4)) = Z°).
Par(P) is contained within some elementary cell af. In Then_ the number of OPS’s required for the reahzatlc_)n of
order to design a filtey(a) defined onA; having the same 9(@) IS Ni/R1 + Na/R,. Thus, we can draw the following
spectral support off(f) (within an elementary cell of\¥), important observation: the number of OPS’s required for the
two procedures are available: generalized factorizable implementation of a GF filter defined

_ . on A, and of its version subsampled on a sublattite,

1 fr?ff\q(Cagjn:)ad_'uL?iﬁsaH)ll}ilrsC‘ﬁz)é(;.r?\;esr?ti)sr?;zilgl(z)f may or may not differ. In particular, iEDFL(LAT(A)) =
! It tel g llt th tional fm, LDFL(LAT(AH)), the number of OPS’s required to realize
QIE“]Z 1S a%pr%x?%e);eqtg 0 the conventional SIEE 5 4y and g(a) will be the same (note that in this case, the
of i(a), divided by | det(H)]. two design procedures presented in point 3 above coincide).

2) gi)t(h:)lggﬁ:;ﬁfif&%‘;‘?flézt;'geeézsfﬁéﬂsﬁe(')A‘npepe%_uch a result is in contrast with the case of nonfactorizable
9 ! implementation, where the number of OPS’s is reduced by a

can compute the new sampling matrk and the new ; .
passband and stopband frequencies of the 1-D filters 8§:tor approximately equal to the subsampling ratlet(H)|.

. ; As an example, consider the filter specs for the example of
the design ofj(a). It can be shown [13] that, if the 1-D _ . . S .
filters of (7) are forced to exhibit the same passbarpaolmlabove’ for the quincux sublattidg = LAT(CH) with

and stopband ripples as in the design /gfa), the 2 1
conventional size ofj(a) will be again approximately H= <0 1)'
equal to Ny, /| det(H)|. _ o _
Note that, in general, the passband and stopband rippled8ficeSLAT(A) andLAT(AH) are represented in Fig. 3. Itis
the filter's frequency response increase with the absolute vagsly inferred that. DFL(LAT(A)) = LDFL(LAT(AH)) =
of the determinant of the decimation matrix used in the filtef - hence the same number of OPS’s is required for the
design [3], [14]. Hence, if the lengths of the 1-D filters usefeneralized factorizable implementation/efz) and of g(a),
in the design ofH (f) and of G(f) are the same (as in the@lthough the support of(a) has approximately one half of
first proposed methodyz(f) is likely to exhibit larger ripples the samples of the support é{a).
than H(f). The second procedure allows to use a decimation _
matrix A with | det(A)| < | det(AH)|, and therefore to reduce E. Symmetries

the ripples of G(f). We consider here only the 2-D case.
Afilter h(Cn) designed following Chen and Vaidyanathan's
D. Generalized Factorizable Implementation Complexity — algorithm (with zero-phas€{¢;(n)}) satisfies the property

We consider here, for simplicity’s sake, only the 2-D cas&(C") = h_(_Cf’) (so that H(f) i§ zero-phase as weII_)
If N, and N, are the lengths of the 1-D filters used in thé3): In addition, if the upper Hermite normal form matrix
design ofh(a) defined onA = LAT(C), then, adopting the A“.agsouated to the deCImann _mat@(@ee Appendix A)
generalized factorizable implementation described infa}-  Satisfies propertylf; = 2Af,, or if it is .dlagonal, then the
N, OPS's are required (although the conventional filter size {@ll0Wing symmetry property holds [14]:
Ny Ny /| det(A)])% One can determine an approximate relat_ionh Cn) = h(CR),
between the number of OPS’s required for the generalized
factorizable implementation df{a) and of a filterg(a) defined Such quadrantal-like symmetry property can be exploited to

2 ) ) _reduce the number of multiplications per input sample if the
A more precise computation of the number of OPS's for the generalize f lizati . d of th lized f izabl
factorizable implementation involves the determinationDd S(LAT(A))., |rect. orm realization (instead of the generalized factorizable
and is discussed in [13]. one) is used.

n=(n1,n2)", 7= (n1,—n2)". (12)
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In the previous example, the upper Hermite normal forimascade of two filters is the sum of their conventional sizes,

associated td is A" = 3 1 . Since A} | # 2AY,, the I-€.
quadrantal-like symmetry is not verified here (in spite of the Niprr = NONO 4 FO D, (14)

inherent symmetry of the spectral support, see Fig. 3). X
f N, =N, 2 NN = NP 2 NO and FV =
v A K1 _ N2 0) A7(1 i
lll. 2-D IFIR FILTERS Ny * = NO, thenNierp = N2/4— 2NN ). Hence, using
) ) ) o such an IFIR scheme with a nonfactorizable implementation
In this section we give a formal definition of a 2-D IFIRrequires less than 25% of OPS's than in the direct case. In gen-
structure, and introduce our design algorithm. eral, using 1-D IFIR structures of the formi(O)(z)ﬁ(I)(zAfi)’
IFIR filters can be profitable in the 2-D case as well as ifye gverall computational burden can be reduced roughly by

the 1-D case. However, in the evaluation of the achievablet,ciors:, a7; in the factorizable case, and by a factérM;
computational weight reduction, it is important to consid§f, ine nonfactorizable case.

how the filters are implemented. In particular, the use of the

(generalized) factorizable implementation affects dramaticallg/ The General Case

the improvements attainable via an IFIR scheme. We discuss

a simple example in Section Ill-A, which should make such Let A = LAT(C) be the signal definition lattice, and
an argument clear. Then, the general 2-D IFIR schemeG@nsider a sequencedgscending lattice chaifl5]) £ =
introduced in Section I1I-B. In the design of 2-D IFIR filters,(Ao, A1, -+, Apr—1) of lattices such that

we have basically two degrees of freedom: the choice of the

sublattice of definition for the shaping filter, and the deter- Ao 2 AD A =LAT(CH,) D - D Ap—
mination of the interpolator’s spectral support. We adopt GF =LAT(CH.H;---Hy_)). (15)
filters for both the shaping filter and the interpolator. The use

of GF filters allows for a simple geometric characterization Qfe define an IFIR structure of as the cascade d¥/ FIR
the filters’ frequency response, which we exploit for the desigfjers (h®(a), K (a), - -, h™M=D(g)) defined onA, such
of the interpolator. In short, we design a set of interpolatoffiat () (a) has non-null coefficients only of;. Note that
which maximize the “corner area” of the transition region. AHO(F) is periodic onA?.

simple computational geometry algorithm to determine such|p, this work, we consider only the casé = 2, and define

candidates is described in Appendix B. H = H,. Note that in any elementary cell of* there are
Our technique yields a (small) set of feasible IFIR schemq%et(HN spectral repetitions off 1)(f).

characterized by the couple subsampling lattice-interpolator. gt D(f) be the ideal frequency response to be approx-

The final choice can be done by direct inspection, evaluatifigated by 7 (FHHD(F). We will consider hereD(f) of
the computational weight and memory requirement for thgike form

realization.
1, f e Par(vi|vs)
D(f :{ ) (16)
A. Factorizable IFIR Filters: A Simple Example () 0, feV\Par(avi|avz), a>1
Consider a factorizable filteh(n) defined onZ?*: h(n) = \yherey, v, are two noncollinear vectors, is a real number

hi(n1)ha(ng). Let Ny and Ny be the lengths ofii(n1) |arger than 1, and’ is a suitable elementary cell of* such
and hy(ny), respectively, so thalv, V, is the size ofh(n).  that Par(aw;|aws) C V. Note that we allow for a transition
Ir_n_plement_lngh(n) without taking into account the fa_ctora-region Par(ow: |oaws)\Par(v; [us). We also put the condition
bility requires IV, N, OPS's. If we adopt the factorizableat pay(aw, |aws) is contained within some elementary cell
implementation, onlyN; + N, OPS'’s are required. Assumey) of A+ — LAT((CH)-T).

now to use a 1-D IFIR structure for both (n) and hz(n). 1) The Shaping Filter:We design the shaping filtéf®) (a)

For instance, we may have defined onA; such that, withiny;, its frequency response
. approximatesD(f). Then, we “interpolate” it om\ by adding
Hi(z) = Hi(o)(z)Hi(l)(zQ), t=1,2. (13) zero-valued samples af\A;.

2) The Interpolator: The purpose of the interpolator is to
Let N\” and NV be the lengths of filtersh(”) (n) and cancel the|det(H)| — 1 undesired spectral repetitions of

~ 1 * * i i
hgl)(n) (without null samples interleaved!) respectively, an%( /(f) on A}\A*. The requirements for the interpolator,

assumeNi(O) + Ni(l) = N;/2 (for details about actual per—t erefore, are
formances of 1-D IFIR filters, see [16], [19]). Using the 0
factorizable implementation of the 2-D filter, now or{ly/; + 77((0)) > Par(v |vp),

N3)/2 OPS’s are required. Assume now to “forget” that S D {Par(aw; |awv,)

the filter is factorizable. It is readily seen (see Fig. 5) that +s,5 € (AT NWV)\{0}} 7)

the whole structure is equivalent to the cascade of two 2-D

filters, the first of whom has non-null samples only on latticeshere P(©) and S(® are the passband and stopband regions
LAT(2I). The number of OPS’s required to implement thef H()(f).
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1<>Z~ <‘§"‘

c<>:‘

Fig. 6. Spectral repetitions off(')(f) on the points ofA7. Solid line: passband curve; dashed line: stopband curve; filled diamonds: spectral repetitions
on the points ofA*; dotted line: feasible stopband curvé$?) of the interpolator corresponding to the maximal rectangles. Note that case (a) and (d)
(corresponding to rectangle®; and R, in Fig. 11) collapse into generalized 1-D filters.

Note that (17) does not constrain the frequency resporgien (of H(f))Par(aw: |aw,) is transformed into rectangle
of HO(f) in points that belong neither to the repetitiongR(cu), and the frequency repetition latticés' and A% are
of Par(wi|ve) on A* (where it should be unitary) nor to transformed intd™* éLAT(A—T) andl™ éLAT((AH)—T),
the repetitions ofPar(aw; |awz) on AT\A* (where it should respectively. The stopband regigi® of H()(f) is trans-
be vanishing). Hence, the set of admittable interpolatort§rmed into rectangleR(b) for someb. The larger the area
frequency response shapes is in general very wide, and.ofR(p), the larger the corner area of the corresponding tran-
order to devise a simple design algorithm, we should constrajiion region. Hence, we should find the “widest” rectangles
our choice to some subclass. In our procedure, we design ##tained in some (rectangular) elementary cell'df which
interpolator as a GF filter, with passband and stopband regiogg not overlap any repetition d®(ca) on the points ofi™*,
sides pairwise parallel to those Bhr(v; |vz), satisfying (17). we will call such rectangles thenaximal rectanglesMore
This choice can be justified considering that the sides of theecisely, a rectangle centered at the origin with sides pairwise
passband region df *)(f) and of its copies omi\A* to be parallel to the axes is maximal if it cannot be expanded along
cancelled are pairwise parallel. any direction, without bumping into some repetition of itself
Within the chosen filter class, we should ple the fl|tebn the points 0'[[‘*7 or into some repetition OR(O{’U,) on the
with the least associated computational weight, such that thgints of'*. Maximal rectangles are the transformed versions
overall frequency response requirements are met. As recaliidthe candidates from which the support of the stopband
in Section II, in general the minimum filter size to achieveegion $(© of HO)(f) is chosen.
some minimax specifications decreases with the corner are@nce the maximal rectangles are determined, one can verify
of the transition region. Therefore, our rule for the choice ¢y direct inspection which interpolator requires the lowest
the passband and stopband regions of the interpolator will §mputational weight to attain the desired overall minimax
maximizing such a corner area, while satisfying (17). specifics. Note that typically there exist very few maximal
It is Straightforward that the paSSband I’engﬁO) should rectang|esy so that not many tests are necessary.
coincide with Par(w;|v2). The choice of the “optimal” stop- A simple algorithm to find all maximal rectangles, given
band curve may be seen as a computational geometry probl@m’.r?u and «, is described in Appendix B.
In particular, the solution is not necessarily unique: more thang) A Study CaseConsider the design parameters intro-
one parallelogram representis§’’), characterized by the samegyced in the examples of Section II:
maximal corner area, may exist.
Our algorithm is effectively simplified if one considers the C=I1H-= <2 ! ) v = (1/20,1/40)T
“transformed” signals (see (9)) 01 .
7n) = hOcn), 7V (an) = kO@Cn).  (18) vz = (~1/20, /40", = 3/2.
The repetitions oPar(v;|v2) on the points ofAT are shown
Now all the passband and stopband regions are rectangiFig. 6. The repetitions centered at the pointsof are
lar with sides pairwise parallel to the cartesian axes. Thgpresented by filled diamonds. The repetitions centered at the
passband regiorPar(v,|vz) is transformed into rectangle points of A*\A* (empty diamonds) are to be cancelled by
Par(A™7CY (v1|v;)) 2 R(u) for somewu, the stopband re- HO(f).
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TABLE |
ENUMERATION OF THE UPPER HERMITE NORMAL FORM MATRICES WITH DETERMINANT RANGING FROM 2 TO 5
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Fig. 7. Contour plot of () (f) and of (b) H(f) within an elementary cell of2. Solid line: passband curve; dashed line: stopband curve.

Let us recall from Section Il that, following Chen andepetition lattice, there are two symmetric couples of such
Vaidyanathan’s algorithm, we obtain the sampling matrix curves (namely, couple (a) and (d) and couple (b) and (c)

(5

and the passband frequencies of the 1-D filtgys = u; =
fps = u2 = 1/40. Thus

w4

= (2 12).

The spectral support of the “transformed” filte{An) is

in Fig. 6.

Note that rectangle®; and R4 in Fig. 11 are extremal (see
Appendix B): their periodic repetitions on the points Iof
form horizontal (vertical) stripes ifR?. Hence, the correspond-
ing stopband curves are oriented stripes (see Fig. 6). In such
a case, the interpolatdd ()( f) can be profitably reduced to
a generalized 1-D filter (i.e., a filter with non-null coefficients

only along some line idk? [14]). In fact, we can seﬁ(o)(f) =
Ho(f>) whereH,(f) is a 1-D filter characterized by passband
and stopband frequencie§, = u2, fs = a2 (Fig. 11(a)),

or F(O)(f) = Hi(f1) with Hy(f) characterized byf, =

shown in Fig. 11, together with the four maximal rectangles,, fs = a1 (Fig. 11(d)). Note in passing that other generalized
found using the algorithm of Appendix B. These rectangleisD filters, oriented along different directions, can be found,
map into the stopband curves depicted in Fig. 6. Due satisfying (17). The determination of such filters, however, is
the symmetry of the spectral mask & ()(f) and of the beyond the scope of the present paper.
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Fig. 8. Contour plot (within an elementary cell 88) of the filters considered in the experimental test. Each row is related to a sublgttied . AT(CH,).

Second and fourth column: fiIteE(l)(f) and HW(f). Third and fifth column: filtersﬁ(o)(f) and H(®)(f). Sixth column: overall frequency response
of the IFIR structure. Solid line: passband curve; dashed line: stopband curve.

IV. EXPERIMENTAL RESULTS {A; = LAT(CH,;)} of A, and for each of them we design the
In this section we show an example of use of our algorithfglated shaping filter and interpolators.
for the design of 2-D IFIR filters. For given filter specifics Both the generalized factorizable and the nonfactorizable
(in terms of the spectral mask and of the definition latticénplementation are considered. This way, we provide a rea-
A = LAT(C)), we first design the “direct” GF filteH (f) on sonable guess of the performance attainable by IFIR schemes
A for comparison. Then we consider a number of sublatticesing filters other than GF.
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TABLE I
PARAMETERS OF THEIFIR STRUCTURES CONSIDERED IN THE EXPERIMENTAL TEST. P* = UPPERHERMITE NORMAL FORM MATRIX ASSOCIATED TOAH ;; D =
Basis of LDFL(LAT(AH;)); Nl(o) , N;O) = LENGTHS OF THEL-D FLTERS USED IN THE DESIGN OF 2(%) (@); MNF, SNF = OVERALL
NUMBER OF MULTIPLICATIONS AND SUMS PER INPUT SAMPLE REQUIRED FOR THENON-FACTORIZABLE IMPLEMENTATION; MGF, SGF=
OVERALL NUMBER OF MULTIPLICATIONS AND SUMS PER INPUT SAMPLE REQUIRED FOR THE GENERALIZED FACTORIZABLE IMPLEMENTATION

| p | b [ ~®| N |mnF[sNF|mer|sar] o5 |

8 5 1 0

Hs 21 7 250 499 129 137 0.07 | 0.04
0 1 0 1
4 2 2 0

H, 21 5 129 489 66 79 0.06 | 0.02
0 2 0 2
12 9 3 0

He o | 15 | 171 | 341 | 83 | 86 |008] o007
0o 1 0 1
12 5 1 0

Hs 30 | 7 | 189 | 376 | 147 | 150 | 0.09 | 0.02
0 1 01
16 5 10

Hio 95 | 9 | 144 | 286 | 142 | 134 | 0.13 | 0.06
0 1 0 1
40 10

Hq 15 15 86 256 47 55 0.07 | 0.02
0 4 0 4
20 5 5 0

Hs 21 | 15 | 132 | 262 | 98 | 99 |o11 | o005
0 1 0 1

In our example, we have tested exhaustively the IFIR-1/10,1/20)7, stopband curve= Par(aw;|awvs) with o =
systems relative to all the sublatticés with index in A 3/2. Note that this spectral mask is the same one described
ranging from 2 to 5, corresponding to bas@#l; with H; in Section I, enlarged by a factor 2 (see Fig. 7). Hence, the
in upper Hermite normal form (enumerated in Table I). Fatecimation lattice is again
each sublatticeA;, the “optimal” stopband curves of the 9 1
interpolator (corresponding to the maximal rectangles) are A= <_2 1).
found. It is seen that some times more than one “maximal”
stopband curve exists, while in other cases no one can b&he 1-D kernels in the design of the “direct” filtér(a)
found (i.e., there is no elementary cell Af which contains are both of lengthN = 61; the passband and stopband
Par(aw;|aw;)). These latter sublattices cannot be used inripples ares, = é; = 0.05. Using the nonfactorizable
IFIR structure. An algorithm to check for such an occurrendmplementation, 465 multiplications and 929 sums per input
may be easily devised: one just needs to determine whetBample are required to realiZzéa) (in fact, the size ofi(a)

R (o) is contained within any of the two elementary cells ofs N?2/| det(A)| = 930). Using the generalized factorizable
I'{ centered at the origin and with sides pairwise parallel implementation, such values are reduced to 92 and to 117,
the axes [13]. respectively. Note that the condition for the quadrantal-like

In some instances (like in the case of Fig. 6), there can bgmmetry discussed in Section Il, point 5, is not satisfied here.
couples of symmetric stopband curves, and we will considerThe frequency responses of the considered filters are shown
just one interpolator for each couple. in Fig. 8 (all the relevant cases are present). The quantitative

For our experiments, we have chosen minimax 1-D filtergsults are summarized in Table Il.
with equal stopband and passband ripples. In order to providdn order to provide a better understanding of the results,
some homogeneity in the results, the order of the 1-D filtetise upper Hermite normal form matriR* associated to each
in the design of the interpolatd? (”)( f) have been chosen soAH; has been computed and reported in Table Il. Whenever
as to obtain the same ripples exhibited by the 1-D filters &ither P, = 2P*,, or P* is diagonal, the condition for
the design ofH(M(f). the quadrantal-ike symmetry of the coefficients /of) (a)

Finally, note that all the figures of this section represent the satisfied (see Section Il); this fact can be exploited for
actual passband and stopband curves (as defined in Appenbix reduction of the number of multiplications in the non-
A) of the filters within the squar& (0.5, 0.5) factorizable implementation. Such a profitable contingency is
verified in the cases dif, andH 4. In particular, with respect
to the “direct” filter h(a), in the case ofH,,, the number
A. The Test of multiplications and of sums per input sample using the

We consider here the definition lattice = Z2 and the nonfactorizable implementation are reduced approximately by
diamond-shaped spectral mask characterized by: passbardctor 5 and 3, respectively, by using the IFIR structure, with
curve = Par(vi|vs), with »; = (1/10,1/20)7,w, = comparable frequency response ripples (see Fig. 9).
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shaping filter, and of the shape of the interpolator’s spectral
support, have been dealt with.

The experiments have been performed considering both the
generalized factorizable and the nonfactorizable implementa-
tion of the filters. The results show that with nonfactorizable
filters, good gains (in terms of computational weight reduction)
are achievable. We maintain that, in such a case, the reduction
of the number of OPS’s corresponds roughly to the index of
the sublattice of definition of the shaping filter (so long as such
index stays below a saturation level).

Using the generalized factorizable implementation, the sit-
uation is more complex. Depending on the spectral sup-
port shape, IFIR schemes may lead to the reduction of the
computational burden in certain cases. The computational
gain, however, is typically lower than in the case of the
nonfactorizable implementation.

Future work will consider the use of multi-band inter-
polators, and the joint design of the the couple shaping
Byt 250 filter-intepolator.

(©) (d)
Fig. 9. Frequency responses (within an elementary cefi of of the filters APPENDIX A
corresponding to the sixth row of Fig. 8. @)(f). (b) H( (). (c) H(®) (f). LATTICE THEORY BASICS
(@ HO(HHO (). In this Appendix we report some notions of lattice theory
that are used extensively throughout the paper. For the proofs,
In Table Il we have also reported matri®, the diago- as well as for more details, the reader is addressed to [17],
nal basis ofLDFL(LAT(AH;)). As described in Section I, [9], [5], and [14].
decimating the impulse responaéa) on LAT(CH;) yields ~ We deal always with square full-rank matrices in this paper.
lower computational weight (using the generalized factorizabfer the purpose of this Appendix, we assume that the size of
implementation) only iLDFL(LAT(AH,)) is less dense that the considered matrices is fixed id.
LDFL(LAT(A)) (in this caseZ2). In fact, in the cases of Any integral matrixU such thatU~" is still integral (or,
H; Hg and Hio such a condition is not verified, and theequivalently, such thatdet(U)| = 1) is called unimodular
number of multiplications and of sums per input sample usifiyvo integral matricesd;, A, such thatd; ' 4; is unimodular
the generalized factorizable implementation is higher than &te calledright-equivalentor associated For each class of
the case of the direct implementation. Hence, in such casassociates, there is just ongper Hermite normal form matrjx
the IFIR scheme is not profitable. On the other side, whée., a matrixA* such that
| det(D)| > 1, the IFIR scheme makes for the reduction of the 1) A“ is upper triangular;
computational weight also when the generalized factorizable?2) Aty >0
implementation is used. 3) Af; <Ay for 1 <i<j < M,
It can be noticed from Table Il that, corresponding to 4) A =0if AY, = 0.
| det(H)| = 4, we have a “saturation” phenomenon (similar A |attice A that admits a basid is denoted byLAT(A). In
to 'Fhe 1-D case): increasing the index of the sublatn_ce. leaggher words A = LAT(A) = {An: n € ZM}. Matrices A;
to increase th.e. number of OPS"S. Beyond such a limit, tlg\c%]dA2 are bases of the same lattice if (and onIyAf)lAl is
spectral repetitions of the shaping filter are too dense to Rgimodular. When dealing with sampling lattices, we always
separated by a “simple” interpolator, and the IFIR scheme dgsyme that they are sublattices®¥ (i.e., they ardntegral
not efficient. lattices, so that they admit only integral bases). A lattice is said
to befactorizable(or separabl¢ if it admits a diagonal basis.
V. CONCLUSIONS An elementary cell of a latticd is any regionC such that

In this paper we have proposed an extension to the 2-D casd) C +a; NC +a; = 0 for anya;,a; € A, a; # a;;
of the idea of Interpolated FIR filters. We have considered 2) Ug,cr € + @i = RM.
only spectral supports in the shape of parallelograms, forA lattice I' = LAT(B) is a sublattice ofA = LAT(A) if
which Generalized Factorizable filters stand as a profitatfend only ify H = A™*B is integral. Term| det(H)| is called
choice. The existence of approximate relationships among the indexof I" in A (indicated ag A:T")), and represents the
filter parameters for GF filters enabled us to approach thatio between the density of points af and ofI'.
problem under a geometric framework (i.e., dealing only with Let n be an integer. Then the distinct sublattices having
the filters’ passband and stopband regions). index n in LAT(A) are {LAT(AH;)}, where {H;} are the
Several issues that do not have a counterpart in the ldpper Hermite normal forms matrices with determinant equal
case, such as the choice of the sublattice of definition of the n.
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An important notion is that of théeast dense factorizable .
lattice (LDFL) ¥ containing A = LAT(C). The LDFL of 1
a lattice A is defined as the smallest factorizable superlattice’ RS
of A. Let R = diag(Ry, Ry, ---,Ry) be a basis oft. The | ) ° °
entry R; is the greatest common divisor of the entries of the | : © °
ith row of matrix A. We also sometimes consider tbensest . ° @
factorizable sublattic§DFS) of A [14].

We adopt the following definition for the Fourier transform | . o
of a signalh(a) defined on a lattice\ = LAT(A): ) a®

H(f) = Z h(a)e—mwf a_ Z h(An)e‘jQWf An. . . o a<1>§
acA nezM 3 *

(19)

H(f) is periodic on thedual lattice A* = LAT(A™7), where
AT 2 (A_I)T, Fig. 10. Latticel'; (dots), rectanglé3’ (dashed line), sef; (circles) and
The Fourier transform of the Signal (a,) defined on the setT (filled circles) for the construction of the maximal rectangles.

S
sublatticeA; of A, obtained from the signal(a) defined on

A as byh,(a) 2 ha),a € Ay, is

0.5 0.5
1 a
H(f)=~ > HU+7) o) | o ® s
openrny & R & R
) az K' Eal o] ﬁzu
whereV is any elementary cell of\*. grn § - : : ] :
Consider a 2-D filterH(f), defined onZ2?. We define L E—. o Nos _'045{35 ____________ @ T
transition regionof H(f) the region of the elementary cell = &l ) -

R(0.5, 0.5) delimited by thepassband curveP and the

stopband curveS (when they are univocally determined), . |05 0 |05
defined as follows: =
0.5 A
P={fiH(P)=1-8,|VH(P£0} @) |© |, o © Ty
S={f: H(f) = 6, |VH(J)|]* # 0} (22) g g B g
" - Fli)y 0 a i ) -
where V indicates the gradient operator and P N é ;
05 P 0. s PR '
5, = max L-HG) @) | | o o1 o
v )IE=01H(f)1>0.5} SR
8 = max |H(f,)|. (24) A I
(fvHEDIP=0H(f,)|<0.5} Los et

The regionP contained withir? is called thepassband region

of H(f), while the region ofR(0.5, 0.5) outsideS is called Fig. 11. Spectral repetitions &V (f) on the points of; and the four

the stopband regiorof H(f). Our definitions may be easily ][}?laﬁ'n;ﬂr;%c;gg_g'Sese'jg:dré'”:t:itﬁjoarfss%i”?hg“”(’)‘fr;tg?g'fhed line: stopband curve;
extended to the case of filters defined on a nonorthogonaef SP P P )
lattice. Instead of regiorfR(0.5, 0.5), some other suitable

elementary cell of the frequency repetition lattice centered pPetitions of extremal maximal rectangles on the pointsof
the origin may be chosen. form horizontal (case 1) or vertical (case 2) stripes.

The first step in the algorithm to find the maximal rectangles,
is constructing an ordered sdf from the points ofl'}

APPENDIX B . S
contained within the rectanglé®’ = {f, f € B, fo > 0}:

MAXIMAL RECTANGLES DETERMINATION

In this Appendix we describe an algorithm to find the maxi- 71 = {(|a{"],a$"): (a{”,a?) € TT N BO\{0}}.  (25)
mal rectangles (defined in Section 11I-B2), givEh, '], » and
67

Next, we construct/> from 77 by discarding all points

. N MG B N
Let B = R(p1,p2), whereLAT(diag(p;,p2)) is the densest (a_g )’ aé))) suc(g that sc()]r;]e Ot?gr pm(mﬁ )’ ag )) eX|s-ts. |.nT1_
factorizable sublattice (DFS) df*. One can easily show thatWith @ < a;” anda;” < a,’. Note that our definition is
the rectangular elementary cells Bf centered at the origin CONSiStent (i.e. it gives rise to just one St starting from
with sides pairwise parallel to the axes are containef.in 1), @nd that one can order the element?JQf according
A maximal rectangléR (a; , a) such that some side of its istOQthe asc%mmg order of their componet: 7 = {a(,
contained within a side oB (i.e., such that;; = p; (case 1) a®), .- aM}.
or a; = ps (case 2)) will be terme@xtremal The periodical  3A dual algorithm would interchange the role f and f..
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Finally, the set of maximal rectangles is composed by th¢s]
M — 1 rectanglesR (dV), R(dP), ..., ROM V), with

(4]

) (2 (@) *
b = {Zli /—27au Z(i) ;11:* (26)
! b [5]
and
. (i+1) (i+1) r*
b@:{‘V /2, atelr” 27 16
2 a§z+1) — aup, alt) g1+ 27) sl

A simple example should make our procedure clear.
Consider the design parameters of Section III-B3: [7]
LAT(A™), Tt = LAT((AH)T) with

2 1 2 1
A= <—2 1)’ H= <0 1
u=(1/40,1/40), «a=3/2.
10]
One can easily show [14] thaFS(I'*) = Z2 so that
B = R(1,1) (see Fig. 10). The points df; are denoted by [11]
small circles in Fig. 10. Note that one can write an automatic
procedure to obtain the points of within 5. For example, [12]
one can determineDFL(L'}), determine (trivially) the points
of such lattice within3, and identify those actually belonging
to I';. The ordered s€t;, denoted by filled circles in Fig. 10,

(8]
El

is [24]
3 1y /1 1y (1 3 [15]
1 :{(170)7(§7§)7(171)7(§7§)7(071)}' (28)
From 75 we build the set of maximal rectangles [16]
{Rl :R(%vé_%)vRQIR(%_%vé) [
R3:R(§7%_%)7R4:R(%_%7%)} (29) [18]

The maximal rectangles are depicted in Fig. 11. Note that
[19
rectanglesk; and R, are extremal.
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