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Two-Dimensional IFIR Structures Using
Generalized Factorizable Filters

Roberto Manduchi

Abstract—In this paper we extend the idea of interpolated
FIR (IFIR) filters to the two-dimensional (2-D) case. IFIR filters
make for the reduction of the computational weight, in the one-
dimensional (1-D) case as well as in the 2-D case. In the 1-D
case, the justification to such a performance advantage rests
upon the relationship between filter order, transition bandwidth
and minimax errors for equiripple linear-phase filters. Even
though no similar relation is known for minimax optimal mul-
tidimensional filters, a qualitatively parallel behavior is shared
by a class of suboptimal filters (“Generalized Factorizable”)
recently introduced by Chen and Vaidyanathan, for which an
efficient implementation exists. In our scheme, we use Generalized
Factorizable filters for both the stages of the IFIR structure. An
interesting problem peculiar to the multidimensional case is the
choice of the sublattice which represents the definition support
of the first-stage (shaping) filter. We present a strategy to choose
(given the spectral support of the desired frequency response) the
optimal sublattice, and to design the second-stage (interpolator)
filter in order to achieve low overall computational weight.

Index Terms—Multidimensional filters, sampling lattices.

I. INTRODUCTION

A. Background

T HE IDEA idea of interpolated finite impulse response
(IFIR) filters has been introduced by Neuvoet al. [16].

In its simplest form, an IFIR structure is an FIR filter whose
transfer function can be written as

(1)

where and are the transfer functions of two
FIR filters and and is some integer. In
other words, an IFIR filter is the cascade of two FIR filters

the shaping filter, and the interpolator
filter), with only if is a multiple of (then

The interpolator removes the undesired
spectral repetitions of the shaping filter (see Fig. 1).

IFIR filters are interesting because they can be implemented
efficiently. The number of elementary operations (multipli-
cations or sums) per input sample (called OPS) required to
implement an FIR filter is approximately equal to the number
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Fig. 1. A 1-D IFIR filter withL = 3: frequency responses of̂H(1)(z3) (the
shaping filter) and ofH(0)(z) (the interpolator).

of non-null coefficients of its impulse response1. Hence,
if is the length of and is the length of

approximately OPS’s are
required to implement the IFIR structure (in spite of the fact
that the length of the overall impulse response
is if and
The minimum length of an FIR filter to meet
some prescribed specifics is, for certain classes of filters (e.g.,
equiripple with narrow passband and transition band), larger
than the length relative to a suitable IFIR structure
satisfying the same specifications. Hence, IFIR filters allow
for computational savings in such cases. However, the number
of memory cells required for the implementation of the IFIR
structure is which is typically slightly
larger than (the number of memory cells required to
realize ).

An interesting aspect of the IFIR filter idea is the connection
with the theory of multistage implementation of interpo-
lators and decimators [6], [7]. One can easily show that
the interpolation or decimation using an IFIR filter can be
directly implemented with the multistage (multirate) scheme
of Crochiere and Rabiner. The two structures are formally
equivalent: the theory developed for the multistage sampling
structure conversion [6], [7] can be used to design IFIR filters,
and vice versa.

In the literature, the design of IFIR filters approximating
ideal low-pass or band-pass frequency response in a minimax
sense has been considered [16], [19]. The impulse response of
an IFIR filter can be regarded to as the interpolated version of a
“decimated” one. Because the impulse response of a selective
band optimal FIR filter is typically highly correlated, it is
intuitive that a “simple” interpolator should fulfill the purpose.
A quantitative analysis of such a notion may be carried out by
exploiting the (approximate) analytical relation which holds
among the parameters of a minimax filter (filter length

1Actually, in a direct form realization, when no symmetry is present, the
number of multiplications per input sample isN; while the number of sums
is N � 1:
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passband and stopband frequenciesand passband and
stopband ripples and for small ripples and [12],
[11]:

(2)

From relation (2) we have that, for sufficiently large
the transition bandwidth is approximately inversely
proportional to (for fixed product

In the original simple design technique (proposed, for
multistage interpolation-decimation schemes, in [6], and for
IFIR filters in [16]), the shaping filter and the interpolator
are designed independently of each other. The amount of
the passband and of the stopband ripples of the overall
filter depends on the relative positions of the oscillations
of the frequency responses of and which
are unknown in general. Hence, only upper bounds for the
resulting and are predictable. If and are the
passband and stopband ripples of the shaping filter, and
and those of the interpolator, from (1) one has that

(3)

(4)

Such worst-case relations may be used for the choice of
the specifics of the shaping filter and of the interpolator, to
achieve desired maximum values of and as in [6]. If
optimal minimax filters are used, the required filter orders may
be obtained using the relations described in [12], [11], and
[18]. Note that, although in their original work [16] Neuvoet
al. suggested the use of a simple first-order or second-order
interpolator, higher order interpolators may be used profitably,
as in [19].

Several improvements to this simple design procedure have
been proposed. Crochiere and Rabiner early realized that
adopting multiple stopband (instead of single stopband) in-
terpolators, provides fairly significant filter order reduction
[8]. Such an idea was generalized by Saramäki et al. [19] to
obtain equiripple behavior of the overall IFIR filter frequency
response. They proposed a procedure to iteratively design

and using the Remez exchange algorithm.
Their method enables to design optimal (in a minimax sense)
IFIR filters; however, it is not clear how to find a multidimen-
sional version of such a technique.

The theory of multidimensional ( -D) multistage sampling
structure conversion has been first proposed by Ansari and
Lee [1] and by Chen and Vaidyanathan [4], and then devel-
oped to some extent by Manduchiet al. [15]. Also in the
multidimensional case, the theory of the multistage sampling
structure conversion and of IFIR filters are equivalent, and we
will deal only with IFIR filters hereinafter. While in [1] and in
[4] the necessary conditions (in terms of sampling lattices and
spectral support determination) for a multistage scheme—IFIR
structure are stated, and in [15] a simple design example is
given, no serious attempt to produce efficient two-dimensional
(2-D) IFIR filters defined on a given sampling lattice has been
proposed in the literature.

Fig. 2. A 2-D IFIR filter: passband curve of the shaping filter (thin line) and
of the interpolator (thick line). The interpolator cancels the undesired spectral
repetitions of the shaping filter.

B. Problem Statement

The purpose of this paper is to provide a framework to
design 2-D IFIR filters, for a certain class of frequency
response shapes widely used in video technology. For the sake
of simplicity, only 2-D domains will be studied in this paper.
The results can be extended to higher dimensions without
major problems.

Let be the lattice of definition of the filter. The simplest
IFIR scheme is composed by the cascade of a shaping filter,
whose coefficient are not null only on a sublattice( times
less dense than ), and of an interpolator. As in the 1-D
case, the purpose of the interpolator is to cancel the undesired
spectral repetitions of the shaping filter (see Fig. 2).

The following issues must be taken care of in the-D case:

1) -D sampling lattices admit more than just one sublat-
tice for a given decimation ratio [9], [5]. Each sublattice
induces a different geometry of the spectral repetitions
of the shaping filter. In this work, we show that, given
the desired frequency response mask, certain sublattices
make for the easy interpolation of the samples of the
shaping filter, while other ones are unsuitable. In our
algorithm, all feasible sublattices of definition of the
shaping filter are tested. Note that the “feasible” sub-
lattices (i.e., such that the the repetitions of the spectral
support of the shaping filter do not overlap) are in a finite
number. In fact, increasing the subsampling ratio, the
density of spectral repetitions increases; corresponding
to some “critical” subsampling ratio, spectral overlap
cannot be avoided.

2) The frequency response of an -D filter cannot be
easily characterized as in the 1-D case; in other words,
a filter’s passband or stopband region can exhibit any
shape (while in the case of low-pass 1-D, they are
bound to be segments). Devising a general technique
for the IFIR system design seems an overwhelming
task. Fortunately, for a large variety of applications,
only certain subclasses are of interest. For example,
frequency responses with passband in the shape of a
parallelogram (typically a diamond) are suitable for the
sampling structure conversion of video signals [9], [20],
[15], as well as for many other applications. We will
concentrate in this work on such a class of spectral
masks.
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We design the shaping filter and the interpolator separately,
in the spirit of the early work of Neuvoet al. [16]. Among
the variety of 2-D filter design techniques available in the
literature [10], we have chosen the one recently proposed
by Chen and Vaidyanathan in [2], [4], [3], and studied later
by Manduchi [14]. We will call such filters “Generalized
Factorizable” (GF) [14]. GF filters are designed starting from
two 1-D filters, taking the tensor product of their impulse
responses, subsampling it on a suitable sublattices ofand
finally reordering the samples on the desired definition lattice.
The main advantages of GF filters are as follows.

1) They “naturally” provide spectral supports in the shape
of parallelograms.

2) The design procedure is very fast (the computational
burden is due to the design of two 1-D filters) and
simple, lending itself to use in automatic design systems
(CAD).

3) They admit an efficient “generalized factorizable” im-
plementation, which can reduce effectively the compu-
tational weight.

4) It is possible to control the size and some characteristics
of the impulse response.

In addition, GF filters exhibit the interesting property that ap-
proximate (worst case) relations can be found among the filter
parameters of interest (filter size, transition region, passband
and stopband ripples). Exploiting such relations it is possible
to predict lower bounds on the performance attainable by 2-D
IFIR filters.

A key point in the 2-D IFIR design is the design of the
interpolator. While the spectral support of the shaping filter
is constrained by the shape of the desired overall frequency
response the interpolator is only required to
be unitary on the passband region of and vanishing
on the undesired spectral repetitions of the shaping filter. The
criterion for the choice of the interpolator’s spectral mask is
the minimization of the computational weight. It turns out
that, in general, several feasible solutions can be devised. We
introduce a computational geometry algorithm to derive all the
“optimal” spectral masks for the interpolator.

In the experimental section, we consider both the nonfac-
torizable and the “generalized factorizable” implementation
of the filters. In this way, we provide a reasonable estimate
of the system’s performance when filters other than GF are
employed. The results show that, in the nonfactorizable case,
improvements in terms of computational weight, comparable
to the 1-D case, are achievable, depending on the shape of the
passband and of the stopband regions. Interestingly enough,
the situation is not quite as simple using the “generalized
factorizable” implementation. It is shown that, depending on
the geometry of the decimation lattice used in the shaping
filter’s design (which, in turn, depends on the shape of the
desired spectral support), the use of an IFIR structure may or
may not reduce the overall computational weight.

The paper is organized as follows. Section II briefly reviews
the theory of GF filters. Section III introduces our 2-D IFIR
design procedure. Section IV shows the experimental example,
and Section V has the conclusions. In order to make the paper

self-contained, some nonstandard notions regarding multidi-
mensional sampling lattices are reported in Appendix A. In
Appendix B we describe a computational geometry algorithm
to design the interpolator’s spectral mask.

We conclude this Introduction with the nomenclature used
throughout the paper.

Set of real, integer numbers.
• We denote vectors by lower case boldface letters

and matrices by upper case boldface letters.
Their entries are named after the following
example:

(5)
where symbol “ ” means vector/matrix trans-
position.

• .
Identity matrix.

• (where
the parallelepiped centered at the origin

.
Parallelepiped centered at the origin with edges
pairwise parallel to the axes

Difference between sets and (i.e., the set
of elements of that do not belong to ).
Lattice with basis .
Dual of lattice .

• We denote a signal defined on an -
dimensional lattice with
(where is assumed to belong to or with

(where The two notations are
interchanged liberally.

• We use term “filter” meaning the filter’s impulse
response (denoted by lower case letter) and
its frequency response (denoted by upper case
letters).

• Conventional filter size the number of filter
coefficients not forced to zero.

OPS Elementary operation per input sample.
Least dense factorizable lattice containing lattice

.
DFS( ) Densest factorizable sublattice contained in lat-

tice .

II. GENERALIZED FACTORIZABLE FILTERS

In recent papers [2]–[4], Chen and Vaidyanathan introduced
a class of -D filters, which are designed starting from 1-
D low-pass prototypes. The resulting frequency response has
passband in the shape of a parallelogram. Although an-
D filter designed this way is not factorizable, its polyphase
components are “generalized factorizable”, in the sense that
they can be written as the tensor product of 1-D filters
oriented along suitable directions.

Chen and Vaidyanathan’s algorithm is actually the only
known technique to designGeneralized Factorizable(GF)
filters [14]. GF filters admit a “generalized factorizable” imple-
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Fig. 3. Left: spectral mask of the filter in the example of Section II. Solid line: passband curve. Dashed line: stopband curve. Right: decimation lattices
LAT(AAA) (dots) andLAT(AAAHHH) (circles).

mentation. If is the length of theth 1-D filter used in the
design algorithm, only OPS’s are required to realize
the GF filter using such an implementation. On the other side,
if the direct form realization is adopted, the number of OPS’s
is equal to the “conventional size” of the -D filter, i.e., to
the number samples of its impulse response not constrained
to zero. The conventional filter size is approximately equal to

where is the decimation matrix used
in the design, as explained later in this section.

In the following, we briefly summarize some important
notions relative to GF filters, which are instrumental to our
theory. More details, as well as the proofs, can be found in
[2]–[4], [14].

A. Chen and Vaidyanathan’s Design Algorithm

Consider a sampling lattice Let

(6)

be a parallelepiped (representing the desired passband region),
characterized by matrix We assume that

has only rational entries.
The core of Chen and Vaidyanathan’s algorithm can be

summarized as follows. Let be
ideal 1-D filters with frequency responses such that

(7)

The factorizable filter

(8)

has spectral support in where
The filter

(9)

obtained subsampling on and reordering the
samples on has spectral support in

Our purpose is to find a matrix and passband frequencies
such that

(10)

Let

(11)

Fig. 4. Example of “corner region” of a diamond-shaped spectral mask.
Solid line: passband curve. Dashed line: stopband curve.

where is the least positive integer such that
is integral, and is the greatest common

divisor of the entries of the-th row of Note that is
integral.

Now let It is easy to prove that, with
this choice of and relation (10) is satisfied.

In practice, we will assume that the passband and stopband
regions of the -D filter are shaped like parallelograms
with pairwise parallel edges and where

for some and will use zero-phase minimax
low-pass FIR filters [14].

As an example, consider the following design parame-
ters: (i.e.,

(see Fig. 3). Using Chen and
Vaidyanathan’s algorithm, we obtain the sampling matrix

and the passband frequencies of the 1-D filters
(the stopband frequencies being and

B. Minimax Relationships

It is possible to derive worst-case relations between the
product of the passband and of the stopband ripples of the fre-
quency response and some measure of the “transition region”,
for a fixed conventional size of the GF filter [14]. In general,
one can expect that, for a fixed conventional filter size, the
product of the passband and of the stopband ripples increases
as the area of the “corner region” depicted in Fig. 4
decreases. This result, which is reminescent of relation (2)
among the minimax parameters of an optimal 1-D filter, should
not surprise: a 2-D GF filter is obtained subsampling the tensor
product of two 1-D filters, and it inherits their properties.
In particular, the “corner region” area is proportional to the
product of the transition bands of the two 1-D filters.
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Fig. 5. The cascade of two 1-D IFIR filters (onz1 and z2, respectively) is equivalent to a 2-D IFIR filter.

C. Impulse Response Decimation

Suppose one is given a GF filter defined on
with spectral support approximating Let

be a sublattice of and assume that
is contained within some elementary cell of In

order to design a filter defined on having the same
spectral support of (within an elementary cell of
two procedures are available:

1) Set i.e. subsample
on and adjust the gain. The conventional size of

is approximately equal to the conventional size
of divided by

2) If the least dense factorizable lattice (LDFL, see Appen-
dix A) containing is less dense than one
can compute the new sampling matrix and the new
passband and stopband frequencies of the 1-D filters for
the design of It can be shown [13] that, if the 1-D
filters of (7) are forced to exhibit the same passband
and stopband ripples as in the design of the
conventional size of will be again approximately
equal to

Note that, in general, the passband and stopband ripples of
the filter’s frequency response increase with the absolute value
of the determinant of the decimation matrix used in the filter
design [3], [14]. Hence, if the lengths of the 1-D filters used
in the design of and of are the same (as in the
first proposed method), is likely to exhibit larger ripples
than The second procedure allows to use a decimation
matrix with and therefore to reduce
the ripples of

D. Generalized Factorizable Implementation Complexity

We consider here, for simplicity’s sake, only the 2-D case.
If and are the lengths of the 1-D filters used in the

design of defined on then, adopting the
generalized factorizable implementation described in [3],

OPS’s are required (although the conventional filter size is
2. One can determine an approximate relation

between the number of OPS’s required for the generalized
factorizable implementation of and of a filter defined

2A more precise computation of the number of OPS’s for the generalized
factorizable implementation involves the determination ofDFS(LAT(AAA));
and is discussed in [13].

on a sublattice designed using the first
procedure of point 3 above [14]. Let
be a basis of (it can be shown that, using
Chen and Vaidyanathan’s technique,
Then the number of OPS’s required for the realization of

is Thus, we can draw the following
important observation: the number of OPS’s required for the
generalized factorizable implementation of a GF filter defined
on and of its version subsampled on a sublattice
may or may not differ. In particular, if

the number of OPS’s required to realize
and will be the same (note that in this case, the

two design procedures presented in point 3 above coincide).
Such a result is in contrast with the case of nonfactorizable
implementation, where the number of OPS’s is reduced by a
factor approximately equal to the subsampling ratio

As an example, consider the filter specs for the example of
point 1 above, for the quincux sublattice with

Lattices and are represented in Fig. 3. It is
easily inferred that

hence the same number of OPS’s is required for the
generalized factorizable implementation of and of
although the support of has approximately one half of
the samples of the support of

E. Symmetries

We consider here only the 2-D case.
A filter designed following Chen and Vaidyanathan’s

algorithm (with zero-phase satisfies the property
(so that is zero-phase as well)

[3]. In addition, if the upper Hermite normal form matrix
associated to the decimation matrix(see Appendix A)

satisfies property or if it is diagonal, then the
following symmetry property holds [14]:

(12)

Such quadrantal-like symmetry property can be exploited to
reduce the number of multiplications per input sample if the
direct form realization (instead of the generalized factorizable
one) is used.
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In the previous example, the upper Hermite normal form

associated to is Since the

quadrantal-like symmetry is not verified here (in spite of the
inherent symmetry of the spectral support, see Fig. 3).

III. 2-D IFIR FILTERS

In this section we give a formal definition of a 2-D IFIR
structure, and introduce our design algorithm.

IFIR filters can be profitable in the 2-D case as well as in
the 1-D case. However, in the evaluation of the achievable
computational weight reduction, it is important to consider
how the filters are implemented. In particular, the use of the
(generalized) factorizable implementation affects dramatically
the improvements attainable via an IFIR scheme. We discuss
a simple example in Section III-A, which should make such
an argument clear. Then, the general 2-D IFIR scheme is
introduced in Section III-B. In the design of 2-D IFIR filters,
we have basically two degrees of freedom: the choice of the
sublattice of definition for the shaping filter, and the deter-
mination of the interpolator’s spectral support. We adopt GF
filters for both the shaping filter and the interpolator. The use
of GF filters allows for a simple geometric characterization of
the filters’ frequency response, which we exploit for the design
of the interpolator. In short, we design a set of interpolators
which maximize the “corner area” of the transition region. A
simple computational geometry algorithm to determine such
candidates is described in Appendix B.

Our technique yields a (small) set of feasible IFIR schemes,
characterized by the couple subsampling lattice-interpolator.
The final choice can be done by direct inspection, evaluating
the computational weight and memory requirement for their
realization.

A. Factorizable IFIR Filters: A Simple Example

Consider a factorizable filter defined on :
Let and be the lengths of

and , respectively, so that is the size of
Implementing without taking into account the factora-
bility requires OPS’s. If we adopt the factorizable
implementation, only OPS’s are required. Assume
now to use a 1-D IFIR structure for both and
For instance, we may have

(13)

Let and be the lengths of filters and
(without null samples interleaved!) respectively, and

assume (for details about actual per-
formances of 1-D IFIR filters, see [16], [19]). Using the
factorizable implementation of the 2-D filter, now only

OPS’s are required. Assume now to “forget” that
the filter is factorizable. It is readily seen (see Fig. 5) that
the whole structure is equivalent to the cascade of two 2-D
filters, the first of whom has non-null samples only on lattice

The number of OPS’s required to implement the

cascade of two filters is the sum of their conventional sizes,
i.e.

(14)

If and

then Hence, using
such an IFIR scheme with a nonfactorizable implementation
requires less than 25% of OPS’s than in the direct case. In gen-
eral, using 1-D IFIR structures of the form
the overall computational burden can be reduced roughly by
a factor in the factorizable case, and by a factor
in the nonfactorizable case.

B. The General Case

Let be the signal definition lattice, and
consider a sequence (descending lattice chain[15])

of lattices such that

(15)

We define an IFIR structure on as the cascade of FIR
filters defined on such
that has non-null coefficients only on Note that

is periodic on
In this work, we consider only the case and define

Note that in any elementary cell of there are
spectral repetitions of

Let be the ideal frequency response to be approx-
imated by We will consider here of
the form

(16)

where are two noncollinear vectors, is a real number
larger than 1, and is a suitable elementary cell of such
that Note that we allow for a transition
region We also put the condition
that is contained within some elementary cell

of
1) The Shaping Filter:We design the shaping filter

defined on such that, within its frequency response
approximates Then, we “interpolate” it on by adding
zero-valued samples on

2) The Interpolator: The purpose of the interpolator is to
cancel the undesired spectral repetitions of

on The requirements for the interpolator,
therefore, are

(17)

where and are the passband and stopband regions
of



570 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 44, NO. 7, JULY 1997

Fig. 6. Spectral repetitions ofH(1)(fff) on the points of��

1: Solid line: passband curve; dashed line: stopband curve; filled diamonds: spectral repetitions
on the points of��; dotted line: feasible stopband curvesS(0) of the interpolator corresponding to the maximal rectangles. Note that case (a) and (d)
(corresponding to rectanglesR1 and R4 in Fig. 11) collapse into generalized 1-D filters.

Note that (17) does not constrain the frequency response
of in points that belong neither to the repetitions
of on (where it should be unitary) nor to
the repetitions of on (where it should
be vanishing). Hence, the set of admittable interpolator’s
frequency response shapes is in general very wide, and, in
order to devise a simple design algorithm, we should constrain
our choice to some subclass. In our procedure, we design the
interpolator as a GF filter, with passband and stopband regions’
sides pairwise parallel to those of satisfying (17).
This choice can be justified considering that the sides of the
passband region of and of its copies on to be
cancelled are pairwise parallel.

Within the chosen filter class, we should pick the filter
with the least associated computational weight, such that the
overall frequency response requirements are met. As recalled
in Section II, in general the minimum filter size to achieve
some minimax specifications decreases with the corner area
of the transition region. Therefore, our rule for the choice of
the passband and stopband regions of the interpolator will be
maximizing such a corner area, while satisfying (17).

It is straightforward that the passband region should
coincide with The choice of the “optimal” stop-
band curve may be seen as a computational geometry problem.
In particular, the solution is not necessarily unique: more than
one parallelogram representing characterized by the same
maximal corner area, may exist.

Our algorithm is effectively simplified if one considers the
“transformed” signals (see (9))

(18)

Now all the passband and stopband regions are rectangu-
lar with sides pairwise parallel to the cartesian axes. The
passband region is transformed into rectangle

for some the stopband re-

gion (of is transformed into rectangle
and the frequency repetition lattices and are

transformed into and ,
respectively. The stopband region of is trans-
formed into rectangle for some The larger the area
of the larger the corner area of the corresponding tran-
sition region. Hence, we should find the “widest” rectangles
contained in some (rectangular) elementary cell of which
do not overlap any repetition of on the points of
We will call such rectangles themaximal rectangles. More
precisely, a rectangle centered at the origin with sides pairwise
parallel to the axes is maximal if it cannot be expanded along
any direction, without bumping into some repetition of itself
on the points of or into some repetition of on the
points of Maximal rectangles are the transformed versions
of the candidates from which the support of the stopband
region of is chosen.

Once the maximal rectangles are determined, one can verify
by direct inspection which interpolator requires the lowest
computational weight to attain the desired overall minimax
specifics. Note that typically there exist very few maximal
rectangles, so that not many tests are necessary.

A simple algorithm to find all maximal rectangles, given
and is described in Appendix B.

3) A Study Case:Consider the design parameters intro-
duced in the examples of Section II:

The repetitions of on the points of are shown
in Fig. 6. The repetitions centered at the points of are
represented by filled diamonds. The repetitions centered at the
points of (empty diamonds) are to be cancelled by



MANDUCHI: 2-D IFIR STRUCTURES 571

TABLE I
ENUMERATION OF THE UPPER HERMITE NORMAL FORM MATRICES WITH DETERMINANT RANGING FROM 2 TO 5

(a) (b)

Fig. 7. Contour plot of (a)H(fff) and of (b)H(fff) within an elementary cell ofZ2: Solid line: passband curve; dashed line: stopband curve.

Let us recall from Section II that, following Chen and
Vaidyanathan’s algorithm, we obtain the sampling matrix

and the passband frequencies of the 1-D filters
Thus

and

The spectral support of the “transformed” filter is
shown in Fig. 11, together with the four maximal rectangles
found using the algorithm of Appendix B. These rectangles
map into the stopband curves depicted in Fig. 6. Due to
the symmetry of the spectral mask of and of the

repetition lattice, there are two symmetric couples of such
curves (namely, couple (a) and (d) and couple (b) and (c)
in Fig. 6.

Note that rectangles and in Fig. 11 are extremal (see
Appendix B): their periodic repetitions on the points of
form horizontal (vertical) stripes in Hence, the correspond-
ing stopband curves are oriented stripes (see Fig. 6). In such
a case, the interpolator can be profitably reduced to
a generalized 1-D filter (i.e., a filter with non-null coefficients

only along some line in [14]). In fact, we can set
where is a 1-D filter characterized by passband

and stopband frequencies (Fig. 11(a)),

or with characterized by
(Fig. 11(d)). Note in passing that other generalized

1-D filters, oriented along different directions, can be found,
satisfying (17). The determination of such filters, however, is
beyond the scope of the present paper.
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Fig. 8. Contour plot (within an elementary cell ofZ2) of the filters considered in the experimental test. Each row is related to a sublattice�i = LAT(CCCHHHi):

Second and fourth column: filtersH
(1)
(fff) andH(1)(fff): Third and fifth column: filtersH

(0)
(fff) andH(0)(fff): Sixth column: overall frequency response

of the IFIR structure. Solid line: passband curve; dashed line: stopband curve.

IV. EXPERIMENTAL RESULTS

In this section we show an example of use of our algorithm
for the design of 2-D IFIR filters. For given filter specifics
(in terms of the spectral mask and of the definition lattice

we first design the “direct” GF filter on
for comparison. Then we consider a number of sublattices

of and for each of them we design the
related shaping filter and interpolators.

Both the generalized factorizable and the nonfactorizable
implementation are considered. This way, we provide a rea-
sonable guess of the performance attainable by IFIR schemes
using filters other than GF.
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TABLE II
PARAMETERS OF THEIFIR STRUCTURESCONSIDERED IN THE EXPERIMENTAL TEST.PPPu = UPPERHERMITE NORMAL FORM MATRIX ASSOCIATED TOAAAHHHi;DDD =

BASIS OFLDFL(LAT(AAAHHHi));N
(0)
1 ; N

(0)
2 = LENGTHS OF THE1-D FILTERS USED IN THE DESIGN OFh(0)(aaa); MNF, SNF= OVERALL

NUMBER OF MULTIPLICATIONS AND SUMS PER INPUT SAMPLE REQUIRED FOR THENON-FACTORIZABLE IMPLEMENTATION; MGF, SGF=
OVERALL NUMBER OF MULTIPLICATIONS AND SUMS PER INPUT SAMPLE REQUIRED FOR THEGENERALIZED FACTORIZABLE IMPLEMENTATION

In our example, we have tested exhaustively the IFIR
systems relative to all the sublattices with index in
ranging from 2 to 5, corresponding to bases with
in upper Hermite normal form (enumerated in Table I). For
each sublattice the “optimal” stopband curves of the
interpolator (corresponding to the maximal rectangles) are
found. It is seen that some times more than one “maximal”
stopband curve exists, while in other cases no one can be
found (i.e., there is no elementary cell of which contains

These latter sublattices cannot be used in a
IFIR structure. An algorithm to check for such an occurrence
may be easily devised: one just needs to determine whether

is contained within any of the two elementary cells of
centered at the origin and with sides pairwise parallel to

the axes [13].
In some instances (like in the case of Fig. 6), there can be

couples of symmetric stopband curves, and we will consider
just one interpolator for each couple.

For our experiments, we have chosen minimax 1-D filters
with equal stopband and passband ripples. In order to provide
some homogeneity in the results, the order of the 1-D filters
in the design of the interpolator have been chosen so
as to obtain the same ripples exhibited by the 1-D filters in
the design of

Finally, note that all the figures of this section represent the
actual passband and stopband curves (as defined in Appendix
A) of the filters within the square (0.5, 0.5)

A. The Test

We consider here the definition lattice and the
diamond-shaped spectral mask characterized by: passband
curve with

stopband curve with
3/2. Note that this spectral mask is the same one described
in Section II, enlarged by a factor 2 (see Fig. 7). Hence, the
decimation lattice is again

The 1-D kernels in the design of the “direct” filter
are both of length 61; the passband and stopband
ripples are Using the nonfactorizable
implementation, 465 multiplications and 929 sums per input
sample are required to realize (in fact, the size of
is Using the generalized factorizable
implementation, such values are reduced to 92 and to 117,
respectively. Note that the condition for the quadrantal-like
symmetry discussed in Section II, point 5, is not satisfied here.

The frequency responses of the considered filters are shown
in Fig. 8 (all the relevant cases are present). The quantitative
results are summarized in Table II.

In order to provide a better understanding of the results,
the upper Hermite normal form matrix associated to each

has been computed and reported in Table II. Whenever
either or is diagonal, the condition for
the quadrantal-like symmetry of the coefficients of
is satisfied (see Section II); this fact can be exploited for
the reduction of the number of multiplications in the non-
factorizable implementation. Such a profitable contingency is
verified in the cases of and In particular, with respect
to the “direct” filter in the case of the number
of multiplications and of sums per input sample using the
nonfactorizable implementation are reduced approximately by
a factor 5 and 3, respectively, by using the IFIR structure, with
comparable frequency response ripples (see Fig. 9).
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(a) (b)

(c) (d)

Fig. 9. Frequency responses (within an elementary cell ofZ2) of the filters
corresponding to the sixth row of Fig. 8. (a)H(fff). (b)H(1)(fff). (c)H(0)(fff).
(d) H(1)(fff)H(0)(fff):

In Table II we have also reported matrix the diago-
nal basis of As described in Section II,
decimating the impulse response on yields
lower computational weight (using the generalized factorizable
implementation) only if is less dense that

(in this case In fact, in the cases of
and such a condition is not verified, and the

number of multiplications and of sums per input sample using
the generalized factorizable implementation is higher than in
the case of the direct implementation. Hence, in such cases,
the IFIR scheme is not profitable. On the other side, when

the IFIR scheme makes for the reduction of the
computational weight also when the generalized factorizable
implementation is used.

It can be noticed from Table II that, corresponding to
we have a “saturation” phenomenon (similar

to the 1-D case): increasing the index of the sublattice leads
to increase the number of OPS’s. Beyond such a limit, the
spectral repetitions of the shaping filter are too dense to be
separated by a “simple” interpolator, and the IFIR scheme is
not efficient.

V. CONCLUSIONS

In this paper we have proposed an extension to the 2-D case
of the idea of Interpolated FIR filters. We have considered
only spectral supports in the shape of parallelograms, for
which Generalized Factorizable filters stand as a profitable
choice. The existence of approximate relationships among the
filter parameters for GF filters enabled us to approach the
problem under a geometric framework (i.e., dealing only with
the filters’ passband and stopband regions).

Several issues that do not have a counterpart in the 1-D
case, such as the choice of the sublattice of definition of the

shaping filter, and of the shape of the interpolator’s spectral
support, have been dealt with.

The experiments have been performed considering both the
generalized factorizable and the nonfactorizable implementa-
tion of the filters. The results show that with nonfactorizable
filters, good gains (in terms of computational weight reduction)
are achievable. We maintain that, in such a case, the reduction
of the number of OPS’s corresponds roughly to the index of
the sublattice of definition of the shaping filter (so long as such
index stays below a saturation level).

Using the generalized factorizable implementation, the sit-
uation is more complex. Depending on the spectral sup-
port shape, IFIR schemes may lead to the reduction of the
computational burden in certain cases. The computational
gain, however, is typically lower than in the case of the
nonfactorizable implementation.

Future work will consider the use of multi-band inter-
polators, and the joint design of the the couple shaping
filter-intepolator.

APPENDIX A
LATTICE THEORY BASICS

In this Appendix we report some notions of lattice theory
that are used extensively throughout the paper. For the proofs,
as well as for more details, the reader is addressed to [17],
[9], [5], and [14].

We deal always with square full-rank matrices in this paper.
For the purpose of this Appendix, we assume that the size of
the considered matrices is fixed to

Any integral matrix such that is still integral (or,
equivalently, such that is called unimodular.
Two integral matrices such that is unimodular
are calledright-equivalentor associated. For each class of
associates, there is just oneupper Hermite normal form matrix,
i.e., a matrix such that

1) is upper triangular;
2) ;
3) for ;
4) if .

A lattice that admits a basis is denoted by In
other words, Matrices
and are bases of the same lattice if (and only if) is
unimodular. When dealing with sampling lattices, we always
assume that they are sublattices of (i.e., they areintegral
lattices, so that they admit only integral bases). A lattice is said
to be factorizable(or separable) if it admits a diagonal basis.

An elementary cell of a lattice is any region such that

1) for any ;
2) .

A lattice is a sublattice of if
(and only if) is integral. Term is called
the index of in (indicated as and represents the
ratio between the density of points of and of

Let be an integer. Then the distinct sublattices having
index in are where are the
upper Hermite normal forms matrices with determinant equal
to
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An important notion is that of theleast dense factorizable
lattice (LDFL) containing The LDFL of
a lattice is defined as the smallest factorizable superlattice
of Let be a basis of The
entry is the greatest common divisor of the entries of the
th row of matrix We also sometimes consider thedensest

factorizable sublattice(DFS) of [14].
We adopt the following definition for the Fourier transform

of a signal defined on a lattice :

(19)

is periodic on thedual lattice where

The Fourier transform of the signal defined on the
sublattice of obtained from the signal defined on

as by is

(20)

where is any elementary cell of
Consider a 2-D filter defined on We define

transition regionof the region of the elementary cell
(0.5, 0.5) delimited by thepassband curve and the

stopband curve (when they are univocally determined),
defined as follows:

(21)

(22)

where indicates the gradient operator and

(23)

(24)

The region contained within is called thepassband region
of while the region of (0.5, 0.5) outside is called
the stopband regionof Our definitions may be easily
extended to the case of filters defined on a nonorthogonal
lattice. Instead of region (0.5, 0.5), some other suitable
elementary cell of the frequency repetition lattice centered at
the origin may be chosen.

APPENDIX B
MAXIMAL RECTANGLES DETERMINATION

In this Appendix we describe an algorithm to find the maxi-
mal rectangles (defined in Section III-B2), given and

Let where is the densest
factorizable sublattice (DFS) of One can easily show that
the rectangular elementary cells of centered at the origin
with sides pairwise parallel to the axes are contained in

A maximal rectangle such that some side of its is
contained within a side of (i.e., such that (case 1)
or (case 2)) will be termedextremal. The periodical

Fig. 10. Lattice��1 (dots), rectangleB0 (dashed line), setT1 (circles) and
setT2 (filled circles) for the construction of the maximal rectangles.

Fig. 11. Spectral repetitions ofH
(1)

(fff) on the points of��

1 and the four
maximal rectangles. Solid line: passband curve; dashed line: stopband curve;
filled diamonds: spectral repetitions on the points of��:

repetitions of extremal maximal rectangles on the points of
form horizontal (case 1) or vertical (case 2) stripes.

The first step in the algorithm to find the maximal rectangles,
is constructing an ordered set from the points of
contained within the rectangle3 :

(25)

Next, we construct from by discarding all points
such that some other point exists in

with and Note that our definition is
consistent (i.e. it gives rise to just one set starting from

and that one can order the elements of according
to the ascending order of their component

3A dual algorithm would interchange the role off1 andf2:
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Finally, the set of maximal rectangles is composed by the
rectangles with

(26)

and

(27)

A simple example should make our procedure clear.
Consider the design parameters of Section III-B3:

with

One can easily show [14] that so that
(see Fig. 10). The points of are denoted by

small circles in Fig. 10. Note that one can write an automatic
procedure to obtain the points of within For example,
one can determine determine (trivially) the points
of such lattice within and identify those actually belonging
to The ordered set denoted by filled circles in Fig. 10,
is

(28)

From we build the set of maximal rectangles

(29)

The maximal rectangles are depicted in Fig. 11. Note that
rectangles and are extremal.
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